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Abstract

Similarity search methods in the literature produce results based on the ranked

degree of similarity to the query. However, the results are typically unsatisfactory, es-

pecially if there is an ambiguity in the query, or the search space include redundantly

repeating similar documents. Diversity in query results is preferred by a variety of

applications since diverse results may give a complete view of the queried topic. In

this study, we investigate the result diversification task in various application ar-

eas, such as opinion retrieval, paper recommendation, with different types of data,

such as spatial, high-dimensional data, opinions, citation graph, and other networks.

Although the definitions of diversity will differ from field to field, we propose tech-

niques considering the general objective of result diversification, which is to maximize

the similarity of search results to the query while minimizing the pairwise similarity

between the results, without neglecting the efficiency.

For the diversity on spatial and high-dimensional data, we make an analogy with

the concept of natural neighbors and propose geometric methods. We also introduce

a diverse browsing method based on the popular distance browsing feature of R-tree

index structures.

Next, we focus on search and retrieval of opinion data on certain entities, and start

our analysis by looking at direct correlations between sentiments of opinions and the

demographics (e.g., gender, age, education level, etc.) of people that generate those
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opinions. Based on the analysis, we argue that opinion diversity can be achieved by

diversifying the sources of opinions.

Recommendation tasks on academic networks also suffer from the mentioned am-

biguity and redundancy issues. To observe those effects, we present a paper rec-

ommendation framework called theadvisor (http://theadvisor.osu.edu) which

recommends new papers to researchers using only the reference-citation relationships

between academic papers. We introduce direction awareness property to the recom-

mendation process, which allows the users to reach either old, foundational (possibly

well-cited and well-known) research papers or recent (most likely less-known) ones.

We also present different implementations and ordering techniques for reducing the

query processing time. Finally, we enhance various result diversification techniques

with direction-awareness property for paper recommendation, propose new algorithms

based on vertex selection and query refinement, and compare in this domain.

Based on our findings on diversifying citation recommendations, we further extend

the diversity of graph-based recommendation algorithms for other types of graphs,

such as social and collaboration networks, web and product co-purchasing graphs.

Although the diversification problem is understandably addressed as a bi-criteria

objective optimization problem over relevance and diversity, the sufficiency of the

evaluations of such methods are questionable since a query-oblivious algorithm that

returns most of its recommendations without considering the query may still perform

the best on these commonly used measures. We show the deficiencies of commonly

preferred evaluation techniques of diversification methods, propose a new measure

called expanded relevance which combines relevance and diversity. Finally, we present

a novel algorithm that optimizes the expanded relevance of the diversified results.
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his instructive comments, invaluable support, and encouragement during my doctoral

study. I also owe many thanks to him and his family for their hospitality.

I am indebted to all my advisory committee members, Srinivasan Parthasarathy

and Arnab Nandi, for spending their time and effort to read and comment on my
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to my former advisor, Hakan Ferhatosmanoǧlu, for guiding me to the right research

area and for our invaluable discussions during the first years of my doctoral study.

In particular, I would like to thank my postdocs and mentors: Erik Saule, Kamer
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Chapter 1: Introduction

Similarity search methods in the literature produce results based on the ranked

degree of similarity to the query. However, the results are typically unsatisfactory,

especially if there is an ambiguity in the query, or the search space include redundantly

repeating similar documents. Diversity in query results is preferred by a variety of

applications since diverse results may give a complete view of the queried topic.

In this study, we investigate the result diversification task in various application

areas (such as opinion retrieval, paper recommendation) with different types of data

(such as spatial, high-dimensional data, opinions, citation graph, and other networks).

Although the definitions of diversity will differ from field to field, we propose tech-

niques considering the general objective of result diversification, which is to maximize

the similarity of search results to the query while minimizing the pairwise similarity

between the results, without neglecting the efficiency.

1.1 Diversity on Spatial and Multidimensional Data

When querying and browsing spatial data, diversity of the results can be very

powerful. With the popularity of location-based services, most smartphones today

come with GPS and solid state compasses, and people use this technology for navi-

gation and searching nearby restaurants, gas stations, etc. A location-based service
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application that defines user’s position with a number of point-of-interests (POI) can

be affected adversely with the information overload. Instead of returning the closest

POIs, close but a more diverse result set is preferred for such an application.

Considering the diversification problem in the spatial domain, it is possible to

present an intuitive solution based on clustering. Data can be initially clustered and

then representatives of clusters around the query point can be returned as search

results. Although clustering can be computationally expensive, there are methods

to generate those representatives with tree-based approaches [94]. The problem of

clustering-based methods is that initial clusters may be unsatisfactory depending on

the settings of the query. Furthermore, if data needs to be clustered for each query,

the method is obviously not scalable. Today, most database management systems

support a spatial index (e.g., R-tree or one of its variants). Therefore, diversity

can be obtained by taking advantage of the spatial index without the extra cost of

clustering [68, 69].

In Chapter 2, we first give a geometric definition of diversity by making an analogy

with the concept of natural neighbors and propose a natural neighbor-based method

and an incremental browsing algorithm based on Gabriel graph for diverse nearest

neighbor search problem. We also introduce a diverse browsing method based on the

popular distance browsing feature of R-tree index structures. The method maintains

a priority-queue with the ranks of the objects depending on both relevancy and di-

versity, and efficiently prunes non-diverse items and nodes. Providing a measure that

captures both relevancy and diversity, we show that pruning internal nodes with re-

spect to their diversity from the items in the result set helps us achieve more diverse

results. The contributions of this work can be summarized as follows:

2



• We formalize the λ-diverse k-nearest neighbor search problem based on

angular similarity and develop measures to evaluate the relevancy and diversity

of the retrieved results.

• We propose two geometric diverse browsing approaches for static databases,

each of which effectively captures the spatial distribution around a query point

and hence gives a diverse set of results.

• Extending the distance browsing feature, we introduce an efficient λ-diverse k-

nearest neighbor search algorithm on R-trees, diverse browsing, and prove its

correctness.

• We conduct experiments on 2D and high-dimensional datasets to evaluate the

performance of the proposed methods.

Key advantages of the proposed geometric and index-based methods are: (1) geo-

metric methods are appropriate for static databases and perform very efficiently once

the graphs are built, (2) index-based diverse browsing does not require any change in

the index structure, therefore, it can easily be integrated into various databases, and

(3) with effective pruning, diverse browsing performs more efficiently than k-nearest

neighbor (k-NN) search on R-trees and also performs better than the state-of-the-art

techniques.

Results suggest that geometric approaches are suitable for static data, and index-

based diverse browsing is for dynamic databases. Our index-based diverse browsing

method performed more efficient than k-NN search with distance browsing on R-tree

(in terms of the number of disk accesses) and more effective than other methods found

in the literature (in terms of Maximal Marginal Relevance). In addition, Gabriel

graph-based method performed well in high dimensions, which can be investigated
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more and applied to other research fields where search in high dimensional space is

required.

1.2 Sentiment Analysis and Opinion Diversification

Increasing popularity of personal web content via blogs, tweets, and other types of

social media has boosted the generation of public opinions on certain famous people

(politicians, singers, etc.), locations (cities, countries, etc.) and brands (products,

companies, organizations, etc.). Search and retrieval of opinions on a subject is

extremely useful for a number of application areas, including reputation management.

However, due to the fact that there might be enormous number of opinions on a

subject, or the opinions are skewed towards a viewpoint in some cases, the task of

sampling and ranking of the opinions by representing all the viewpoints is a complex

task.

In Chapter 3, we start our analysis by looking at direct correlations between senti-

ments of opinions and the demographics of people (e.g., gender, age, education level,

etc.) that generate those opinions. The details of a large-scale sentiment analysis

on Yahoo! Answers data is given in [67]. We start our analysis by looking at direct

correlations, e.g., we observe more positive sentiments on weekends, very neutral ones

in the Science & Mathematics topic, a trend for younger people to express stronger

sentiments, or people in military bases to ask the most neutral questions. We then

extend this basic analysis by investigating how properties of the (asker, answerer)

pair affect the sentiment present in the answer. Among other things, we observe a

dependence on the pairing of some inferred attributes estimated by a user’s ZIP code.

We also show that the best answers differ in their sentiments from other answers, e.g.,
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in the Business & Finance topic, best answers tend to have a more neutral sentiment

than other answers. Finally, we report results for the task of predicting the attitude

that a question will provoke in answers. We believe that understanding factors influ-

encing the mood of users is not only interesting from a sociological point of view, but

also has applications in advertising, recommendation, and search.

Since the availability of a topical classification makes it possible to differentiate

sentiments attached to a particular entity according to the context, we investigate

this property to obtain a more faceted representation of the opinions about an entity.

Based on the hypothesis of network diversity is positively associated with receiving

more diverse and less redundant information, we argue that opinion diversity can

also be achieved by diversifying the sources of opinions, which is basically finding a

set of opinions from various opinion holders with diverse demographics. We discuss

the outlines of such an opinion diversification framework and leave the practical ap-

plication as a future work for those who have access to user profiles of social networks.

1.3 Graph-based Paper Recommendation and Diversity

Next, we focus on the paper recommendation problem on academic networks,

and how the mentioned ambiguity and redundancy issues interacts with the users’

preferences and satisfiability of the results. To observe those effects, we built a pa-

per recommendation service called theadvisor1 which recommends new papers to re-

searchers using only the reference-citation relationships between academic papers [79].

Chapter 4 gives the details of the methods used in the service and how the recom-

mendations are scored with direction awareness if the intent of the research if to find

1http://theadvisor.osu.edu
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recent or tradition papers [75, 72]. Our aim in this work is to evaluate the existing

algorithms and to explain the new algorithms that power theadvisor. We introduce

a class of parametric algorithms, said to be direction aware, which allow to give more

importance to either the citation of papers or their references. They make the cita-

tion suggestion process easily tunable for finding either recent or traditional relevant

papers. In particular we extend two eigenvector based methods into direction-aware

algorithms, namely DaRWR and DaKatz. These algorithms are compared to state-

of-the-art citation-based algorithms for bibliographic recommendation and their ad-

equation to the problem is studied. In our experiments, direction-aware algorithms

outperform the existing algorithms when the objective is to find either traditional or

recent papers. We deployed one of the algorithms in our web service which allows

any researcher to upload a bibliography file and obtain suggestions. We believe that

our service will become a tool of major interest for researchers.

We also focus on different implementation and ordering techniques for reducing

the query processing time for the recommendations [70, 71]. We propose an efficient

implementation of the sparse matrix-dense vector multiplication (SpMxV)-type prob-

lem which arises in our publicly available citation, venue, and expert recommendation

service, theadvisor. We propose compression and bandwidth reduction techniques

to reduce the memory usage and hence, the bandwidth required to bring the matrix

from the memory at each iteration. We also use matrix ordering techniques to reduce

the number cache misses. Our contribution is two-fold:

• We propose techniques to efficiently store the matrix used by our algorithm,

• We propose an efficient implementation of the algorithm and investigate sev-

eral matrix ordering techniques based on a hypergraph partitioning model and
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ordering heuristics, such as Approximate Minimum Degree (AMD) [6], Reverse

Cuthill-McKee (RCM) [31], and SlashBurn [62].

We give a thorough evaluation of the proposed approach and measure the efficiency

of implementation and matrix storing/ordering techniques used in theadvisor. The

combination of all the techniques improved the response time of our service by 67%

(3x). We believe that the techniques proposed here can also be useful for SpMxV-

related sparse-matrix problems in social network analysis.

Next, we investigate the result diversification task in paper recommendation prob-

lem [77, 78]. We target the bibliographic search and diversifying the results of the

citation/paper recommendation process with the following objectives in mind: (1) the

direction awareness property is kept, (2) the method should be efficient enough to be

computable in real time, and (3) the results are relevant to the query and also diverse

within the set. The contribution of this work is three-fold:

• We survey various random walk-based diversity methods (i.e., GrassHop-

per [147], DivRank [101] variants, and Dragon [128]) and relevancy/diversity

measures. We enhance these algorithms with the direction awareness property.

• We propose new algorithms based on vertex selection (LM, γ-RLM) and query

refinement (GSparse).

• We perform a rigorous set of experiments with various evaluation criteria and

show that the proposed γ-RLM algorithm is suitable in practice for real-time

diverse bibliographic search.

All of the algorithms in this study are implemented and tested within theadvisor

service. Our experiments with various relevancy and diversity measures show that the

proposed γ-RLM algorithm can be preferred for both its efficiency and effectiveness.
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In Chapter 5, we show how relevance feedback and result diversification affect and

improve the service in practice, and how those different techniques complement each

other to provide a powerful document discovery engine [79, 80].

1.4 Graph Diversity and Common Pitfalls in its Evaluation

Based on our findings on diversifying citation recommendations, in Chapter 6, we

further extend the diversity of graph-based recommendation algorithms for

other types of graphs, such as social and collaboration networks, web and product

co-purchasing graphs. Result diversification has gained a lot of attention as a way to

answer ambiguous queries and to tackle the redundancy problem in the results.

In this work, we assume that the graph itself is the only existing information, no

categories or intents are available. We are interested in providing recommendation

to the user based on a set of objects of interest. The recommended items should be

related to the user’s interest while being dissimilar to each other. This particular

problem has attracted a lot of attention recently; many algorithms and evaluations

have been proposed [147, 101, 128, 90, 37, 146, 27].

The objective evaluation of the quality of the algorithms is one of the interest of

this work. Most commonly, algorithms are evaluated by expressing the problem as

a bi-criteria objective optimization problem. One objective is selected for relevancy,

most commonly the sum of personalized PageRank of the recommended items, and

another one is selected for diversity, most commonly the density of the subgraph

formed by the recommended set or its expansion ratio. The two objectives are either

aggregated (often with a simple linear aggregation) or both objectives are considered

simultaneously and Pareto dominance is considered (where the solutions are in the
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relevancy-diversity objective space). The first contribution of this work is to show that

such an evaluation is inappropriate. Indeed we design query-oblivious algorithms for

the two commonly used combination of objectives that return most of its recommen-

dations without considering the user’s interest, yet, perform best on these commonly

used measures.

We argue that a result diversification algorithm should be evaluated under a mea-

sure which tightly integrates the query in its value. The goodness measure proposed

in [128] has such a property; however, it is shown to be dominated by the relevance.

We then propose a new measure called expanded relevance (exprel`) which measures

the coverage of the relevant part of the graph. We show that the previous query-

oblivious algorithms cannot optimize exprel` [76].

We also investigate various quality indices by computing their pairwise correlation.

This highlights that the goodness measure is highly correlated with the sum of ranking

scores, meaning that algorithms that perform best on the goodness measure do not

return results that are much different from a simple PageRank computation. The

exprel metric we propose appears to have no high correlation with other metrics.

Based on the intuition behind exprel` measure, we propose a greedy algorithm,

BestCoverage, to optimize exprel`. Because of submodular properties of the exprel`

objective, BestCoverage is an (1 − 1/e)-approximation algorithm for exprel` with

complexity O(kn∆`) where n is the number of vertices in the graph and ∆ is the

maximum degree of the graph. We propose a relaxation of BestCoverage with com-

plexity O(kδ̄`∆`) where k is the number of recommended objects and δ̄ is the average

degree of the graph. We experimentally show that the relaxation carries no significant

harm to the expanded relevance of the solution.
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Chapter 2: Diverse Browsing for Spatial and

Multidimensional Data

Database search techniques try to obtain the most relevant information and rank

it according to the degree of similarity to the queries. However, diversity in query

results is also preferred by a variety of applications since results very similar to each

other cannot capture all aspects of the queried topic. In this work, we focus on the

λ-diverse k-nearest neighbor search problem on spatial and multi-dimensional

data. Unlike the common approach of diversifying query results in a post-processing

step, we naturally obtain diverse results with the proposed geometric and index-based

methods.

In this work, we first make an analogy with the concept of natural neighbors and

propose a natural neighbor-based method for 2D and 3D data and an incremental

browsing algorithm based on Gabriel graphs for higher dimensional spaces. We then

introduce a diverse browsing method based on the popular distance browsing feature

of spatial index structures, such as R-trees. The algorithm maintains a priority queue

with the ranks of the objects depending on both relevancy and angular diversity

and efficiently prunes non-diverse items and nodes. We experiment with a number

of spatial and high-dimensional datasets, including Factual2’s US points-of-interest

2http://www.factual.com/
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dataset of 13M entries. With effective pruning, our diverse browsing method is shown

to be more efficient (regarding disk accesses) than k-NN search on R-trees, and more

effective (regarding Maximal Marginal Relevance) than the diverse nearest neighbor

search techniques found in the literature.

2.1 Introduction

Most similarity search methods in the literature produce results based on the

ranked degree of similarity to the query. However, the results could be unsatisfactory,

especially when there is an ambiguity in the query or when the search results include

redundantly similar data.

To resolve ambiguity, it would be better to answer the query with diverse search

results instead of homogeneous results representing similar cases. For example, the

query Barcelona is ambiguous since the system cannot decide whether it represents

a city, a football team, or a movie [4]. A reasonable strategy for responding to an

ambiguous query is to return a mixture of results covering all aspects of the query.

Redundantly repeating search results is another problem of conventional similarity

search techniques, particularly for search spaces that include many duplicate data.

In this case, similar but homogeneous information will fill up the top results. This

situation has been discussed in several application areas, such as recommender sys-

tems [149], online shopping [130], and web search [30].

Similar problems also exist when querying and browsing spatial data. In some

applications, diversity is preferred over similarity due to the information overload

(see Fig. 2.1). Suppose a criminal is spotted in NYC by a camera at 6th Ave & 33rd

St (C0). Back in police department, the police have access to a number of cameras in
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Figure 2.1: A location-based service application can be adversely affected with the in-
formation overload. A conventional similarity search (e.g., k-nearest neighbor search)
returns four cameras in W 33rd street and one from Broadway (blue squares); whereas,
diverse browsing can capture spatial distribution around the first camera and provide
superior results (red circles).

the city, but have limited screens (say k=5) to display the view of different cameras.

The cameras are labeled in order by their distance from C0. Instead of returning

the closest point-of-interests (POIs), a result set containing close yet diverse results

is preferred for such an application.

Diversity in k-NN search is not limited to the spatial domain. A diverse k-NN

classifier can be potentially useful for medical diagnosis since it is more likely to unveil

minority reports by grouping and eliminating similar cases. Suppose that a number

of medical records are labeled with ‘+’ and ‘-’ labels depending on whether a patient

has disease D or not, respectively. Given a patient’s medical records q, the aim of

k-NN classifier is to classify the patient as D+ or D− by finding the majority class
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Figure 2.2: A classification example with k-NN (left) and diverse k-NN (right) clas-
sifiers for k= 5. Although four out of five closest medical data points to q are D−,
a diverse perspective unveils minority reports and classifies the patient as D+ with
60% confidence.

label for the closest k records. Fig. 2.2 depicts the classification results obtained from

the k-NN classifier and diverse k-NN classifier.

The relation between diversity and relevance was investigated before, especially in

text retrieval and summarization. Researchers have proposed linear combinations of

diversity and relevance [18]. However, maximizing diversity of a result set is known

to be NP-hard [19, 20]. Hence, some studies develop heuristic techniques [59, 141] to

optimize the results.

Considering the diversification problem in the spatial domain, it is possible to

present an intuitive solution based on clustering. Data can be initially clustered and

then representatives of clusters around the query point can be returned as search

results. Although clustering can be computationally expensive, there are methods

to generate those representatives with tree-based approaches [94]. The problem of

clustering-based methods is that initial clusters may be unsatisfactory depending on

the settings of the query. Furthermore, if data needs to be clustered for each query,
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the method is obviously not scalable. Today, most database management systems

support a spatial index (e.g., R-tree or one of its variants). Therefore, diversity

can be obtained by taking advantage of the spatial index without the extra cost of

clustering.

In this work, we first give a geometric definition of diversity by making an analogy

with the concept of natural neighbors and propose a natural neighbor-based method

and an incremental browsing algorithm based on Gabriel graph for diverse nearest

neighbor search problem. We also introduce a diverse browsing method based on the

popular distance browsing feature of R-tree index structures. The method maintains

a priority-queue with the ranks of the objects depending on both relevancy and di-

versity, and efficiently prunes non-diverse items and nodes. Providing a measure that

captures both relevancy and diversity, we show that pruning internal nodes with re-

spect to their diversity from the items in the result set helps us achieve more diverse

results. The contributions of this work can be summarized as follows:

• We formalize the λ-diverse k-nearest neighbor search problem based on

angular similarity and develop measures to evaluate the relevancy and diversity

of the retrieved results.

• We propose two geometric diverse browsing approaches for static databases,

each of which effectively captures the spatial distribution around a query point

and hence gives a diverse set of results.

• Extending the distance browsing feature, we introduce an efficient λ-diverse

k-nearest neighbor search algorithm on R-trees, namely diverse browsing, and

prove its correctness.

14



• We conduct experiments on 2D and high-dimensional datasets to evaluate the

performance of the proposed methods.

Key advantages of the proposed geometric and index-based methods are:

• Geometric methods are appropriate for static databases and perform very effi-

ciently once the graphs are built,

• Index-based diverse browsing does not require any change in the index structure,

therefore, it can easily be integrated into various databases,

• With effective pruning, diverse browsing performs more efficiently than k-NN

search on R-trees and also performs better than the state-of-the-art techniques

regarding MMR metric.

2.2 Related work

There are notable works on diverse ranking in the literature. Carbonell and Gold-

stein [18] describe the Maximal Marginal Relevance (MMR) method for text retrieval

and summarization. MMR attempts to find a result set by maximizing the query

relevance and also minimizing the similarity between documents in the result set.

The proposed method combines relevancy and novelty with a user-defined parameter

(λ), which affects the importance of relevancy and diversity of the results.

Since the problem of finding diverse results is known to be NP-hard, Jain et al. [52,

59] investigate the k-nearest diverse neighbor search problem and develop two greedy

approaches to optimize the results in terms of both relevancy and diversity. Both

proposed methods employ the advantages of an available R-tree index. Immediate

Greedy (IG) incrementally grows the result set R by including nearest points only if

they are diverse enough from the data points already in R. Buffered Greedy (BG)
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tries to overcome some deficiencies of IG. They use the R-tree index only for getting

the query’s nearest neighbors in the dataset. Yu et al. [140, 141] address the issue

of diversification in recommendation systems and introduce two heuristic algorithms

to maximize the diversity under different relevance constraints. They state that

maximizing diversity is about finding a balance between relevance and diversity. The

proposed Swap algorithm basically tries to swap elements which are less likely to

contribute to the set diversity with diverse ones. Greedy algorithm, similar to IG,

includes the next most relevant item to the result set only if that item is diverse with

respect to the items already in the result set.

Some other studies attack the diversity problem in various ways. Liu and Ja-

gadish [94] employ the idea of clustering to find a solution to the Many-Answers

Problem. They suggest that taking one representative from each cluster results in

more diverse results. They propose a tree-based approach for efficiently finding the

representatives, even if the search space is constrained at runtime. Halvey et al. [51]

compare dissimilarity and clustering-based diverse re-ranking methods to introduce

diversity in video retrieval results.

The notions of diversity and novelty are generally discussed in the context of in-

formation retrieval and recommendation systems. Clarke et al. [30] investigate the

problems of ambiguity in queries and redundancy in results and propose an evaluation

framework. Chen and Karger [25] describe a retrieval method which assigns nega-

tive feedback to the documents that are included in the result list for maximizing

diversity. Vee et al. [130] present inverted list algorithms for computing diverse query

results in online shopping applications. Ziegler et al. [148, 149] present an algorithmic

16



framework to increase the diversity of a top-k list of recommended products. In order

to show its efficiency, they also introduce a new intra-list similarity metric.

There are also works on content diversity over continuous data of publish/subscribe

systems, such as news alerts, RSS feeds, social network notifications [35], and the di-

verse skyline [119]. Greedy heuristics were proposed for the problems although the

discussions on how relevance and diversity should be combined, and how well greedy

approaches approximate the optimal solution is fairly useful. Interested readers may

refer to [96] for further information on diversity.

2.3 Preliminaries

Before we state our diversity and λ-diverse k-nearest neighbor search definitions,

let us first analyze the approach used by KNDN-IG and KNDN-BG [52, 59]. For

KNDN-IG the objective is to find a fully diverse set of results R close to the query

point q. This means that for all r1, r2 ∈ R,

divdist(r1, r2, V (q)) =
L∑
j=1

(Wj × δj) > MinDiv,

where V (q) is the diversity attributes, L is the number of dimensions to be diversified

(in our case L= d), W is the set of weighting factors for the differences (δ1, . . . , δL)

sorted in decreasing order, and MinDiv is the minimum diversity distance. The

diversity computation in KNDN-IG is simply based on the Gower coefficient [49]

with monotonically decaying weights W calculated with

Wj =
aj−1 × (1− a)

1− aL
, for 1 ≤ j ≤ L,

where a is the rate of decay.
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KNDN-BG applies the same technique; however, it stores the eliminated points.

Then the method checks if two of those points (say p′ and p′′) are pairwise-diverse,

and also eliminated because of the same resulting point ri∈R. If it finds such a pair,

R is updated as (R \ {ri}) ∪ {p′, p′′}.

MinDiv setting assumes that data is in [0, 1]d space; otherwise, it must be set

with a knowledge of density and the range of data. When a is selected around 0.1, the

dimension with the highest difference is overrated. This suggests that KNDN favors

the points along the axes. Hence, it tries to find 2d diverse points in a d-dimensional

space. This behavior is problematic since k could be any number. Consequently, the

results do not guarantee that KNDN accurately captures the distribution around the

query point. Finally, these methods do not allow to select how diverse/relevant the

results will be, unless the importance of diversity is embedded into either MinDiv or

a parameters.

Our diversity definition employs the angular similarity between two points re-

garding the query point. In other words, a diverse k-nearest neighbor search method

should maximize the pairwise angular similarity while minimizing the overall distance.

Angular similarity and diverse k-nearest neighbor search is defined in Definitions 2.3.1

and 2.3.2, respectively.

Definition 2.3.1. Angular similarity. Given a query point q, two points p1 and

p2, and an angle θ, angular similarity (simθ) of p1 with respect to q and another point

p2 is:

simθ(p1, q, p2) =

{
1− p̂1qp2/θ, if p̂1qp2 < θ

0, otherwise.
(2.1)

simθ results in 0 if the angle p̂1qp2 is greater than θ. It becomes 1 if both of them

point at the same direction.
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Table 2.1: Notation for diversity on spatial and multidimensional data

Symbol Description

S dataset
n |S|, size of the dataset
k # search results
q query point
λ importance of diversity over relevance
R set of result points
K set of result points for k-NN search
d # dimensions

simθ angular similarity of two points regarding q
DT(S) Delaunay triangulation of points in S
GG(S) Gabriel graph of points in S
k′ # natural neighbors for q in S ∪ {q}
W weights wi of each natural neighbor

adj[p] adjacent nodes/points of p in a graph
lGG(k) # layers required to obtain k Gabriel neighbors
~q
p pruning sector from q towards p
−→qp vector from query point q in the direction of p
ε small fraction to relax ~q

p

θ~ central angle of the pruning sector
r~ radius of the pruning sector
pi a point in S
pnn the nearest neighbor point of q
Bi an index node in R-tree

mindist minimum distance measure [112]
rank measure that combines mindist and simθ

PQ priority queue
cts current timestamp

ts[Node] timestamp of a node in PQ

Definition 2.3.2. λ-diverse k-nearest neighbor search. Given a set of points S,

a query point q, and a diversity ratio λ, the λ-diverse k-nearest neighbor search on q

retrieves a set of k resulting points R = {p1, . . . , pk}, such that R =

argmin
R⊆S
|R|=k

[
α

k∑
i=1

sim(q, pi) +
2β

k(k − 1)

k∑
i=1

k∑
j=i+1

simθ(pi, q, pj)

]
(2.2)
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where α = 1 − λ and β = λ. This function minimizes pairwise angular similarity

(depending on λ) and maximizes relevancy (depending on 1− λ) of the results.

Note that the relative importance of diversity versus relevance is adjusted with the

λ parameter. When λ=0, the method reduces to k-NN search. For 0.5 ≤ λ ≤ 0.9, the

results are expected to be diverse enough without sacrificing relevancy. As a result,

Definition 2.3.2 provides a more flexible and user-tunable setting for diversification

of k-NN queries.

The rest of the work includes proposed geometric and index-based methods for

efficiently solving λ-diverse k-nearest neighbor search problem. The notation is given

in Table 2.1.

2.4 Geometric Diverse Browsing

In the spatial domain, diverse k-nearest neighbor search is conceptually similar

to the idea of natural neighbors, which is calculated with Voronoi diagrams (VD)

and Delaunay triangulation (DT) [8, 83]. In this section, we first present an analogy

of diversity with natural neighbors. Based on the analogy, we propose a natural

neighbor-based method along with the techniques that are used to efficiently retrieve

natural neighbors of a query point. Although the discussions are mostly on the 2D

space, the method can be extended to work on the 3D space as well. Observing the

limitations of this method in higher dimensional spaces, we present another geometric

approach, namely the Gabriel graph-based diverse browsing method.
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Figure 2.3: Natural neighbor weights wi of x in 2D (left), DT with and without x
(right).

2.4.1 Analogy with natural neighbors

The natural neighbors (NatN) of a point p∈S are the points in S sharing an edge

with p in DT(S). They also correspond to Voronoi cells that are neighbors of Vp. In

case of a point x /∈ S, its natural neighbors are the points in S whose Voronoi cells

would be modified if x is inserted in VD(S). The insertion of x creates a new Voronoi

cell V +
x that steals volume from the Voronoi cells of its potential natural neighbors

(see Fig. 2.3).

To capture the influence of each NatN, we use natural neighbor weights in natural

neighbor interpolation [115]. Let D be the VD(S), and D+ =D ∪{x}. The Voronoi

cell of a point p in D is defined by Vp, and V +
p is its cell in D+. The natural neighbor

weight of x with respect to a point pi is

wi(x) =
Vol(Vpi ∩ V +

x )

Vol(V +
x )

, (2.3)

where Vol(Vpi) represents the volume of Vpi , and 0≤wi(x)≤1. The natural neighbor

weights are affected by both the distance from x to pi and the spatial distribution of

pi around x.
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2.4.2 Natural neighbor-based method

Based on the property of the natural neighbor concept which captures both the

distance to a query point and also the spatial distribution around it, we claim that

the natural neighbors of a query point q give a diverse set of similarity search results,

if the natural neighbor weights W are used as ranking measures. The method works

as follows: (1) simulate the insertion of q into DT(S), (2) find the natural neighbors

of q: {p1, . . . , pk′} along with the weights W = {w1, . . . , wk′}, and (3) report results

according to the weights in descending order. Details are provided in the following

sections;

Offline Generation of Delaunay Triangulation In the preprocessing stage, DT(S)

is calculated for all the data points in S. Although the weights are calculated

with the overlapping areas of these cells, and natural neighbors are defined (and

also easy to understand) in terms of Voronoi cells, performing operations on DT

is computationally more efficient.

There are I/O- and memory-efficient methods for building Delaunay triangu-

lation in 2D and 3D [2, 58]. These methods can generate DTs for billions of

points. There are also publicly available implementations for 2D [114] and for

higher dimensions [10]. We use Qhull implementation [10] to generate DT(S).

Step 1 - Flip-based Incremental Insertion We simulate insertion of q into DT(S)

with a flip-based insertion algorithm. It is easy to determine the simplex of

DT(S) containing q in linear time by inspecting all triangles.

Let τ be the simplex in DT(S) containing q. All vertices of τ automatically

become natural neighbors of q once it is inserted to DT(S). Then, the necessary
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edge flips are carried out until no further edge needs to be flipped, revealing

even more natural neighbors of q.

The number of flips needed to insert q is proportional to the degree of q (the

number of incident edges) after its insertion. The average degree of a vertex in

a 2D DT is six. This number is proportional to the number of dimensions.

Step 2 - Find NatNs and weights Vertices {p1, . . . , pk′} adjacent to q in DT(S∪q)

are the natural neighbors of q. The volume of a d-dimensional Voronoi cell is

computed by decomposing it into d-simplices and summing their volumes. The

volume of a d-simplex τ with vertices (v0, . . . , vn) [83] is computed as:

Vol(τ) =
1

d!

∣∣det
(
v1 − v0 · · · vn − v0

)∣∣ , (2.4)

where each column of the n×n determinant is the difference between the vectors

representing two vertices. Weights W are then calculated with Eq. 2.3.

Step 3 - Report for Diverse kNN NatN-based method naturally returns k′ re-

sults as an answer to query point q. The result set R is ranked according to

the weights of each neighbor. If k′ ≥ k, we report the top-k ranked results.

Otherwise, k′ points are returned.

Overview of the method is given in Algorithm 1. Note that if the number

of natural neighbors is greater than k, the points with smaller weights are

eliminated. Otherwise, the method may return less than k results.

2.4.3 Limitations

The drawback of using natural neighbors in diverse k-nearest neighbor search is

that there is always a fixed number of natural neighbors of a point, and the number
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Algorithm 1: Algorithm NatNDiversitySearch

procedure NatNDiversitySearch(q, k,DT)
DT′ ← Insert(DT, q)
W ← {}
for each point pi in adj[q] do

wi ← CalculateWeight(DT′, pi, q)
W ← W ∪ {wi}

W ′ ← Sort(W )
if adj[q] > k then

W ′ ← W ′[1 : k]

return W ′.i

is proportional to the number of dimensions. This can even be seen as an advantage

since parameter k is not specified by the user; it is inherently captured by the process.

For browsing purposes, one cannot restrict the search with only natural neighbor

results as the user may demand more search results. The search needs to continue

incrementally through the neighbors of neighbors with Voronoi cells. Without any

assumptions on the distribution of the data, the average degree of a vertex in a 2D DT

is 6 [83]. In this case, diverse k-nearest neighbor search with the NatN-based method

for 2D space may not return a result set with k items. As a result the method is

forced to investigate the neighbors of neighbors with Voronoi cells which were not

modified with the insertion of q.

For higher dimensional spaces, the average degree of a point in DT grows quickly

with d (approximately dd) [38]. The problem of selecting a subset of elements in this

set to obtain a diverse set of k items cannot be trivially solved with a NatN-based

approach. Because of the disadvantages, NatN-based method is more appropriate for

low-dimensional data and small k values.
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Figure 2.4: Incremental browsing of a Gabriel graph. (i) Delaunay triangulation of
the points with Gabriel edges highlighted. (ii) For a query point q, diverse results are
gathered layer-by-layer starting with pnn.

2.4.4 Gabriel neighbor-based method

In high dimensions, DT is intractable in terms of both construction complexity

O(ndd/2e) and browsing efficiency. For better scalability and browsing capability in

high dimensional spaces, we propose using Gabriel graphs (GG) instead of DT.

The Gabriel graph [41] is the set of edges eij that is a subset of DT(S), for which

the circle with diameter [pipj] contains no other points from S.

GG(S) = {eij ⊆ DT(S)| ∀pk ∈ S, |pkpi|2 + |pkpj|2 ≥ |pipj|2} (2.5)

Gabriel graph contains those edges of DT that intersect their Voronoi faces [99].

Hence, GG can be constructed in O(n log n) time by first constructing DT and VD,

and then adding each edge in DT to GG if it intersects its Voronoi face. Without DT

and VD, GG can always be constructed by brute-force in O(n3) time.
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The advantage of working with GG is that both nearest neighbor graph (NNG)

and minimum spanning tree (MST) are subgraphs of it; therefore, GG still captures

proximity relationships among data points. Furthermore, GG is reasonably sparse

and simple: for planar graphs |GG(S)|≤3n−8 [99]. As a result, the Gabriel graph is

particularly popular in constructing power-efficient topology for wireless and sensor

networks [91].

Our solution for diverse k-nearest neighbor search problem is to browse GG layer-

by-layer, starting from the nearest point pnn to the query point q. Fig. 2.4 shows an

example of GG layers connected with B-spline. For efficiency, the query point is not

inserted into GG(S), but rather the spatial location of q is imitated with its nearest

neighbor pnn.

After finding pnn, the algorithm iteratively searches the n-degree neighbors of pnn

in GG(S), starting with n=1. GGDiversitySearch stops when k or more points

are included in R. Note that the resulting points are added layer-by-layer; therefore,

there is a ranking among layers. However, they are not sorted within layers, since

there is no concept similar to natural neighbor weights in Gabriel graphs. In addition,

|R| ≥ k, meaning that the algorithm may return more than k results. The method is

given in Algorithm 2.

It is possible to return exactly k results by examining the last layer of points added

into R. One method is to choose a subset of points from the last layer, which optimizes

the overall diversity of R. We are using a similar approach in the experiments,

explained in the next section.
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Algorithm 2: Algorithm GGDiversitySearch

procedure GGDiversitySearch(q, k,GG, S)
pnn ← NearestNeighbor(S, q)
R← {}
R′ ← {pnn}
while |R| < k do

R← R ∪R′
R′′ ← {}
for each point p in R′ do

R′′ ← R′ ∪ adj[p]

R′ ← (R′′ \R)

return R

2.4.5 Optimization of Gabriel graph layers

GG-based method browse GG layer-by-layer, and return |R| ≥ k results. When

|R| > k, it is possible to investigate the elements of the last layer and select a subset

of them to make sure that exactly k results are returned. The problem can be defined

as follows:

Let q be a query point, and k be the number of results for a diverse k-nearest

neighbor search. Suppose R is the Gabriel neighbors of q, inserted layer-by-layer up

to the layer lGG(k)−1, satisfying |R| < k. The problem is to select a set of k−|R|

objects from the layer lGG(k) so that the diversity of R′ will be maximum. L refers

to the last layer to be investigated. Algorithm 3 finds a local maximum for diversity

metric of the results.

2.5 Index-based Diverse Browsing

Spatial databases mostly come with an index structure, such as the widely used R-

tree [112]. A popular method called distance browsing [56] tries to find the k-nearest
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Algorithm 3: Algorithm GGOptimizeLastLayer

procedure GGOptimizeLastLayer(q, k, R, L)
R′ ← R
L′ ← L
while |R′| < k do

o← argminobj∈L′ DIV(R′ ∪ obj)
R′ ← R′ ∪ {o}
L′ ← L′ \ {o}

return R′

neighbors (k-NN) of a point in a spatial database that uses the R-tree index. We

introduce diverse browsing for the diverse k-nearest neighbor search over an R-tree

index.

The principal idea of diverse browsing is to use the distance browsing method with

a pruning mechanism that omits non-diverse data points and minimum bounding

rectangles (MBRs). A priority queue is maintained with respect to a rank, which is

a combination of the mindist [56] and the angular similarity (Eq. 2.1) for the object

obj (either a data point or an R-tree index node). In each iteration, the closest object

is investigated (see Fig. 2.5).

In the following sections, ranking and pruning mechanisms (2.5.1), correctness

of the algorithm (2.5.2), and their integration into our incremental diverse browsing

method (2.5.3) are explained. Note that the algorithm is given in two parts (Algo-

rithms 4 and 5).

2.5.1 Pruning and ranking

When a point p is added to the result set R, we draw an imaginary sector ~q
p from

the query point q in the direction of p with θ~ =2× θs angle and r~ =rs×|−→qp|. Every
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Figure 2.5: Example for diverse browsing. (i) Suppose B1 and B2 are two internal
nodes of the R-tree index. (ii) When the closest MBR is investigated and the closest
point p1 is added to the result set, p2 is pruned because of high angular and distance
similarity to p1. The rank of p3 is also increased here due to its high angular similarity
to p1. (iii) Next, p4 is added to the result set and causes B2 to be pruned since none
of the items in B2 can be diverse.

point in this sector will eventually be pruned. By default, rs = 1 + λ and θs = 2π
k+ε

,

unless specified otherwise.

We use the term rank as an alternative to mindist in distance browsing. Ranks

of points and MBRs in the priority queue are calculated according to the angular

similarity and distance with respect to the elements in R (see Algorithm 4). Note

that the points with ranks closer to 0 are more likely to be included in the result set.

Points without enough angular diversity and distance from another point in R are

pruned. Similarly, the algorithm also prunes MBRs only if none of the corners of the

object are diverse enough to be in the result set. The advantage here is that all the

pruned data can be displayed as similar results of each resulting point with a small

modification since we have the information why a point is pruned.
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Algorithm 4: Algorithm GetRank

procedure GetRank(q, obj, R, λ)
Inputs: q: query point, obj: point or rectangle, R: current state of the result set
Inputs: λ: importance of diversity vs. relevance, rs: pruning radius ratio
θs ← 2π

k+ε

rs ← 1 + λ
δ ← mindist(q, obj)
if obj is a point then

for each point p in R do
s[p]← simθ(obj, q, p)
if s[p] > 0 and δ < |−→qp| × rs then

return Prune(obj)

rank ← λ×max(s) + (1− λ)× δ
else if obj is a rectangle then

for each point p in R do
s← miny∈obj.corners(simθ(y, q, p)) if ∀y ∈ obj.corners in ~q

p then
return Prune(obj)

else if ∃y ∈ obj.corners in ~q
p then

δ ← min(|−→qp| × rs, |−→qy|)
rrank[p]← λ× s+ (1− λ)× δ

rank ← max(rrank)

return rank

2.5.2 Correctness of the algorithm

The efficiency of the proposed method comes from the diverse browsing of the

R-tree structure. As in incremental nearest neighbor search algorithms and distance

browsing [56], a min-priority queue (PQ) is maintained after each operation. However,

instead of mindist metric we use the result of the GetRank function as the value of

each object in PQ. GetRank gives a non-negative value as the rank of a point or an

MBR depending on its angular diversity and distance to the query point depending

on both R and λ. In each iteration, the object with the lowest rank (top of PQ) is

investigated.
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As the rank of each object in PQ depends on the current state of R, some of the

ranks will be obsolete after another point is inserted into R. But, instead of updating

all the objects in PQ (which would be inefficient), we argue to update only the top of

PQ with a timestamp-based approach until an up-to-date object is acquired. Current

timestamp (cts) is incremented every time a point is included in the result set. The

proposed method based on timestamp-based update of ranks in PQ is proved by

Lemma 2.5.1 and Theorem 2.5.2.

Lemma 2.5.1. Update operation on an object, which is on top of PQ and has an

earlier timestamp, can either increase the rank of the object or does not affect it at

all.

Proof. An object obj is updated only when ts[obj] < cts. Since cts increases when a

new item is added to R, there are exactly (cts-ts[obj]) new items in the result set R+

compared to the time when rank[obj] was calculated.

Suppose that the new rank of obj at the current timestamp is rank′[obj]. If obj

is a point, three possible outcomes of the update are:

1. ∃p ∈ R+, obj resides in ~q
p ⇒ Prune(obj)

2. ∃p ∈ R+, simθ(obj, q, p) > maxr∈R(simθ(obj, q, r))⇒ rank′[obj] > rank[obj]

3. ∀p ∈ R+, simθ(obj, q, p) ≤ maxr∈R(simθ(obj, q, r))⇒ rank′[obj] = rank[obj]

On the other hand, if obj is a leaf or internal node, the rank depends on the corners

of the MBR:

1. ∃p ∈ R+, ∀y ∈ obj.corners, y resides in ~q
p ⇒ Prune(obj)
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2. ∃p ∈ R+, ∃y ∈ obj.corners, simθ(y, q, p) > maxr∈R(simθ(obj, q, r))

⇒ rank′[obj] > rank[obj]

3. ∀p ∈ R+, ∃y ∈ obj.corners, y resides in ~q
p, simθ(y, q, p) ≤ maxr∈R(simθ(obj, q, r))

⇒ rank′[obj] = rank[obj]

We have shown that some updated objects are pruned. If not, its rank either

increases or stays the same.

Theorem 2.5.2. An object on top of PQ with the current timestamp provides a

lower-bound for the ranks of all objects in PQ, even if there are other objects in PQ

with earlier timestamps.

Proof. Suppose obj is on top of PQ with the current timestamp, and let obj′ be an-

other object in PQ with an older timestamp (ts[obj′] < cts). Following Lemma 2.5.1,

even if the rank of obj′ is updated, it is either pruned or rank+[obj′] ≥ rank[obj′].

Since obj′ is not on top of PQ, rank[obj′] ≥ rank[obj]. Hence rank+[obj′] ≥ rank[obj].

Therefore, rank[obj] is still a lower-bound for the ranks of the objects in PQ.

2.5.3 Incremental diverse browsing

After extending the distance browsing feature of R-trees with diverse choices,

incremental browsing of an R-tree gives diverse results depending on λ. Details of the

method are given in Algorithm 5, excluding certain boundary conditions, i.e., when

λ = 1, or PQ becomes empty.

The proposed algorithm has the following properties:

Property 5.3: Diverse k-nearest neighbor results obtained by the diverse browsing

method always contain pnn, the nearest neighbor of the query point q.
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Algorithm 5: Algorithm DiverseKNNSearch

procedure DiverseKNNSearch(q, k, λ,R-tree)
R← {}
cts← 0
PQ ←MinPriorityQueue()
Enqueue(PQ, 〈R-tree.root, cts, 0〉)
while not IsEmpty(PQ) and |R| < k do

while ts[ Top(PQ)] < cts do
e← Dequeue(PQ)
Enqueue(PQ, 〈e, cts,GetRank(e)〉)

e← Dequeue(PQ)
if e is a point then

R← R ∪ {e}
cts← cts+ 1

else
for each obj in node e do

Enqueue(PQ, 〈obj, cts,GetRank(obj)〉)

return R

Proof. Initially R = Ø. Therefore the rank of every object obj ∈ PQ is calculated

solely depending on themindist to the query point (see Algorithm 4). The algorithm’s

behavior is similar to that of the distance browsing method at this stage. When the

first point p is dequeued from PQ, it is included to R. p is also the point with the

minimum distance to q. Hence, pnn ∈ R.

Property 5.4: Diverse browsing can capture the set Pc which comprises k points

uniformly distributed around q with the same distances as pnn.

Proof. The method selects the points in Pc without pruning any of them. We guar-

antee that the points in Pc are retrieved without any assumptions about the order. In

addition, min p̂iqpj = 2π/k where pi, pj ∈ Pc. Therefore [2π/k] ≥ [2π/(k + ε)] = θs.

Hence, no point in Pc is pruned.
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Dissimilarity-based diversification methods (e.g., [59]) do not support this prop-

erty since they are likely to prune some points in Pc, especially when k > 6.

2.6 Experiments

We define the evaluation measures in Section 2.6.1. Real and synthetic datasets

used in the experiments are summarized in Section 2.6.2. Evaluation and discussion

of the methods for spatial and high-dimensional datasets are given in Sections 2.6.3

and 2.6.4.

2.6.1 Evaluation measures

In order to measure how well the methods capture the relevancy and the spa-

tial distribution around the query point, we use the evaluation measures given in

Definitions 2.6.1, 2.6.2, and 2.6.3.

Definition 2.6.1. Angular diversity. Given a query point q and a set of results

R, angular diversity measures the spatial diversity around the query point:

DIV(q, R) = 1−

∥∥∥∥∑pi∈R
−→qpi
‖−→qpi‖

∥∥∥∥
|R|

. (2.6)

The intuition behind this measure is that each of the points in R tries to influence

the overall result in the direction of the point itself. If the result set is fully diverse,

sum of these “forces” will be closer to the center; therefore, the average influence

on the query point gives an idea of how diverse the result set is. This measure can

easily be applied to higher dimensions since it consists of simple vector additions and

normalization. See Fig. 2.6 for the angular diversity of the points in Fig. 2.3.
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Figure 2.6: Angular diversity measure. (i) Suppose diverse 6-nearest neighbor search
for q retrieves {p1, . . . , p6}. (ii) Angular diversity of the result set is calculated by the
sum of vectors ~qpi on a unit circle/sphere. (iii) When the result set is diverse, the
average of these vectors will be close to the center; otherwise, (iv) the average will be
close to the circle. (v) For example, maximum angular diversity (DIV=1) in 2D for
k = 3 can be achieved with points which have an angle of 2π/3 pairwise.

However, the angular diversity measure is not adequate to evaluate the diversity

of a result set since an algorithm can always return a better set of items more distant

than the nearest neighbors if the distance factor is omitted.

Definition 2.6.2. Relevance. Given a query point q, its k-nearest neighbors K,

and a set of results R, relevance measure calculates the normalized average distance

of the points in R with respect to the k-nearest neighbors:

REL(q,K,R) =

∑
pj∈K ‖

−→qpj‖∑
pi∈R ‖

−→qpi‖
. (2.7)
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The result of REL is in the interval [0,1]. Magnitude of each vector is calculated

in the Euclidean space although any metric distance measure can be applied to the

function, as long as the measure is consistent with the one used in calculation of

k-NN.

Definition 2.6.3. Diverse-relevance. Given a query point q, its k-nearest neigh-

bors K, a set of results R, and a parameter λ, diverse-relevance measures both rele-

vancy and angular diversity of the results:

DIVREL(q,K,R) = λ× DIV(q, R) + (1− λ)× REL(q, R). (2.8)

DIVREL is based on the Maximal Marginal Relevance (MMR) method [18]. When

λ = 0, the measure evaluates the relevance of the results excluding the diversity. The

aim of our methods is to maximize the diverse-relevance of a result set depending on

the value of λ.

2.6.2 Datasets

We conduct our experiments on both real datasets of POIs in 2D and synthetic

high-dimensional datasets to evaluate the efficiency and effectiveness of the proposed

methods. The properties of our datasets are summarized in Table 2.2.

Real datasets. We use four real-life datasets in our experiments. ROAD is the

latitudes and longitudes of road crossings in Montgomery County MD. 10% of the

ROAD dataset is randomly selected as query points. The North East NE dataset con-

tains postal addresses from three metropolitan areas (New York, Philadelphia and

Boston).3 The CAL dataset consists of points of interest in California.4 To avoid

3http://www.rtreeportal.org

4http://www.cs.fsu.edu/∼lifeifei/SpatialDataset.htm
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Table 2.2: Properties of datasets

Dataset d Card. Description

ROAD 2 64K road crossings, Montgomery ct
NE 2 124K postal addresses, northeast of US
CAL 2 105K points of interest in California
USPOI 2 5,8M POIs in the US, Factual data

NORM 6 500K normal distribution (µ = 0, σ2 = 1)
UNI 6 500K uniform distribution
SKEW 6 500K skew normal dist. (µ=0,σ2=1,α=1)
HDIM 10 1M uniform distribution

querying outside of the data region, 500 points from both datasets are randomly

selected as queries.

Finally, the USPOI dataset is extracted from more than 13M points-of-interest in

the US, gathered by Factual.5 Among those, 8.8M have the location information and

5.8M are unique. We have randomly chosen 1000 POIs as queries.

Synthetic datasets. We generate four synthetic high-dimensional datasets.

NORM is a 6D dataset generated with normal distribution (µ = 0, σ2 = 1). UNI and

HDIM are 6D and 10D datasets generated with uniform distribution. SKEW is gener-

ated with skew normal distribution (µ=0, σ2 =1, α=1). For each of these synthetic

datasets, 200 query points are produced with the original distribution and parameters.

2.6.3 Results

Real datasets. We compare the results of geometric approaches (NatN-based

and GG-based) with diverse browsing of R-tree and KNDN-IG and KNDN-BG [59]

5http://www.factual.com
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on ROAD, NE, CAL, and USPOI datasets. In order to be consistent, the results of the

NatN-based method is obtained first. Depending on the number of natural neighbors

of each query k′, we run other algorithms with k = k′. R-trees are built with a page

size of 512 bytes (which holds 64 data points) and a fill factor of 0.5. Immediate

greedy (IG) and buffered greedy (BG) approaches of the KNDN method are adopted

for the spatial domain: the threshold parameter MinDiv is set to 0.1, which is also

modified according to the value of λ. Note that when λ = 0, both KNDN and diverse

browsing on R-tree methods reduce to k-NN.

Similar results for all real datasets (see Fig. 2.7) indicates that geometric methods

naturally produce diverse results in terms of the DIV measure. Since the natural and

Gabriel neighbors of a point are fixed in a dataset, these methods are the most efficient

ones, only if (1) the purpose of the search is angular diversity, and (2) the spatial

database is stable. The GG-based method has an advantage over the NatN-based

method while it enables for incremental diverse browsing.

However, life itself is always changing. In most cases a spatial index is used

to represent certain points-of-interests, and those databases are updated constantly.

Roads are built, new restaurants are opened, old buildings are replaced by new ones.

Because geometric methods require a preprocessing time for building the entire DT

or GG, they are not appropriate for dynamic databases. In addition, users may want

to adjust how diverse vs. relevant the search results should be. Index-based methods

provide such flexibility. We will discuss the advantages and disadvantages of each

method in Section 2.6.4.

If we focus on index-based search methods, both diverse browsing and KNDN

start with DIVREL ≈ 1 when λ= 0, and they try to adjust their results as the user
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Figure 2.7: Comparison of the algorithms on ROAD (a,b,c), NE (d,e,f), CAL (g,h,i),
and USPOI (j,k,l) datasets. Aim of the methods is to maximize the diverse-relevance
(DIVREL) of the results. Angular diversity (DIV) of the geometric approaches are
stable because the natural and Gabriel neighbors of a point are fixed.
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asks for more diversity. It is seen that diverse browsing performs better in producing a

more diverse result set for the spatial domain compared to KNDN-IG and KNDN-BG

(about 20% improvement for λ = 1, 10% improvement overall). The diverse browsing

method also gives a high diverse-relevant set of results as the user seeks diversity in

the results (about 15% to 25% improvement).

Synthetic datasets. The purpose of experimenting in high-dimensional space

is to show the efficiency of each algorithm and the diverse-relevance of the results.

Fig. 2.8 shows the comparison of diverse browsing, GG-based and KNDN methods on

synthetic 6D datasets. The NatN-based method is omitted, because it is not scalable

to high dimensions due to its high average degree (see Section 2.4.3). In order to

measure the efficiency of each index-based method, we spot the page accesses when

λ = 1, for which the algorithms investigate the highest number of internal nodes.

For the queries where relevance is preferred over diversity (i.e., λ < 0.5), diverse

browsing and KNDN-BG perform better than the GG-based method since they are

both based on the distance browsing feature of R-trees. On the other hand, the

Gabriel graph-based method is extremely powerful for diversity-dominant queries

(i.e., λ ≥ 0.5) in terms of both computational efficiency and the diverse-relevance

of the results. After retrieving the nearest neighbor pnn in the database, it only

takes page accesses equal to the number of layers lGG(k) required to obtain k Gabriel

neighbors. From our observations, lGG(k) ≤ 2 for k = O(d2). The GG-based method

also improves the diverse-relevance of the results up to 25% when λ ≥ 0.5.

The most challenging dataset we experiment on is the HDIM dataset. Because

generating the GG efficiently in high-dimensions is not the concern of this work, we

decided to extract only the necessary Gabriel-edges for this experiment. Fig. 2.8-(j,k)
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Figure 2.8: Comparison of the algorithms on NORM (a,b,c), UNI (d,e,f), SKEW (g,h,i),
HDIM (j,k,l) datasets.
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suggest that the GG-based method is highly effective for diversity-intended queries,

where index-based methods return similar results for different λ values. This is obvi-

ously because the Euclidean distance in higher dimensions may not accurately mea-

sure the similarity. But still, the diverse browsing method is able to produce the

same results for λ≤ 0.5 as KNDN-IG and KNDN-BG with 36% less page accesses.

For λ>0.5, diverse browsing is more effective and efficient.

Diverse browsing makes less disk accesses as it successfully prunes out the index

nodes that are not diverse with respect to the results found. Hence, it does not make

any unnecessary disk accesses. However, both KNDN methods iteratively investigate

nearest neighbors to find the next diverse element.

2.6.4 Discussions

Proposed geometric and an index-based diverse browsing methods have their own

advantages in terms of preprocessing, querying, flexibility, and scalability. A summary

of the proposed methods are given in Table 2.3.

Table 2.3: Comparison of the methods

Method Results Ordered Prep. Incremental

NatN k′ by wi build DT NO

GG ≥ k by layer build GG YES

Diverse
k by rank NO YES

Browsing

Preprocessing. The advantage of the index-based diverse browsing method is

that it does not require any preprocessing and is ready to execute on any spatial
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Table 2.4: Diversity (DIV), diverse-relevance (DIVREL) and the number of disk
accesses (DA) for the USPOI dataset for λ = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

KNN Natural Neigh. Gabriel Graph
λ DIV DIVREL DA DIV DIVREL DIV DIVREL

0.5 0.524 0.762 9.4 0.763 0.686 0.739 0.723
0.6 0.524 0.715 9.4 0.763 0.701 0.739 0.726
0.7 0.524 0.667 9.4 0.763 0.717 0.739 0.730
0.8 0.524 0.620 9.4 0.763 0.732 0.739 0.733
0.9 0.524 0.572 9.4 0.763 0.748 0.739 0.736
1.0 0.524 0.529 9.4 0.763 0.762 0.739 0.739

AVG 0.524 0.644 9.4 0.763 0.724 0.739 0.731

KNDN-IG KNDN-BG Diverse Browsing
λ DIV DIVREL DA DIV DIVREL DA DIV DIVREL DA

0.5 0.504 0.519 10.9 0.558 0.557 10.4 0.745 0.630 8.5
0.6 0.497 0.489 11.5 0.564 0.542 10.7 0.788 0.659 8.5
0.7 0.499 0.479 12.2 0.561 0.534 11.0 0.834 0.707 8.5
0.8 0.494 0.475 12.9 0.558 0.535 11.3 0.867 0.763 8.5
0.9 0.481 0.471 13.6 0.563 0.548 11.6 0.881 0.820 8.5
1.0 0.484 0.482 14.3 0.567 0.566 11.9 0.885 0.878 8.5

AVG 0.493 0.486 12.6 0.562 0.547 11.1 0.833 0.742 8.5

database that use data partitioning, such as R-tree, R*-tree. On the other hand,

geometric methods require to build DT or GG, which can be very complex depending

on dimensionality and cardinality. As a result, we suggest index-based diverse brows-

ing for a dynamic database, which is more likely to be based an index that handles

insert, delete and update operations efficiently; whereas geometric methods for static

databases, which would not cause DT and GG to be frequently calculated.

Querying. As mentioned before, the NatN-based method naturally returns a

result set with a fixed number of points. If the user does not specify k and the purpose

is to find a perfectly balanced diverse and relevant set of results (see DIVREL graphs

at λ ≈ 0.5), the NatN-based method is appropriate. However, diverse browsing is
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Figure 2.9: Relevance vs. diversity for USPOI dataset. Each point corresponds to the
average values of DIV and REL metrics for a run with a different λ (limλ→0REL→ 1
for all index-based methods).

more suitable for diverse k-NN search, which requires exactly k results to be returned.

If the query asks for at least k results, the GG-based method can be used as well.

Flexibility. We can investigate this property in two different ways. The first

is the flexibility of setting the importance of diversity over relevance. Only diverse

browsing method adjusts itself for various λ values, since the natural and Gabriel

neighbors are fixed in a graph. Also note that among the index-based methods,

only diverse browsing can provide diverse results when the user is willing to sacrifice

relevancy (see Fig. 2.9). The second is the flexibility of incremental diverse browsing,

where the user demands more search results. Both index-based diverse browsing and

GG-based methods enable the retrieval of additional diverse results.

Scalability. For high dimensional spaces, the NatN-based method is intractable

(see Section 2.4.3). Since data partitioning methods are shown to be inefficient for
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high dimensional data, the GG-based method can be preferred over index-based di-

verse browsing. Experiments (see Fig. 2.8-(j,k)) show that the GG-based method

is in fact very efficient (∼10K vs. lGG(k) page accesses) and effective (0.6 vs. 0.85

DIVREL for λ=1) in high dimensional datasets.

2.7 Summary

In this work, we investigate the diversification problem in multi-dimensional near-

est neighbor search. Because diverse k-nearest neighbor search is conceptually similar

to the idea of natural neighbors, we give a definition of diversity by making an analogy

with the concept of natural neighbors and propose a natural neighbor-based method.

Observing the limitations of NatN-based method in higher dimensional spaces, we

present a Gabriel graph-based method that scales well with dimensionality. We also

introduce an index-based diverse browsing method, which maintains a priority queue

with the ranks of the objects depending on both relevancy and diversity, and ef-

ficiently prunes non-diverse items and nodes in order to efficiently get the diverse

nearest neighbors. To evaluate the diversity of a given result set to a query point,

a measure that captures both the relevancy and angular diversity is presented. We

experiment on spatial and multi-dimensional, real and synthetic datasets to observe

the efficiency and effectiveness of proposed methods, and compare with index-based

techniques found in the literature.

Results suggest that geometric approaches are suitable for static data, and index-

based diverse browsing is for dynamic databases. Our index-based diverse browsing

method performed more efficient than k-NN search with distance browsing on R-tree

(in terms of the number of disk accesses) and more effective than other methods
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found in the literature (in terms of MMR). In addition, Gabriel graph-based method

performed well in high dimensions, which can be investigated more and applied to

other research fields where search in high dimensional space is required. Since there

are numerous application areas of diverse k-nearest neighbor search, we plan to extend

our method to work with different types of data and distance metrics.
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Chapter 3: Sentiment Analysis and Opinion Diversification

Increasing popularity of personal web content via blogs, tweets, and other types of

social media has boosted the generation of public opinions on certain famous people

(politicians, singers, etc.), locations (cities, countries, etc.) and brands (products,

companies, organizations, etc.). Search and retrieval of opinions on a subject is

extremely useful for a number of application areas, including reputation management.

However, due to the fact that there might be enormous number of opinions on a

subject, or the opinions are skewed towards a viewpoint in some cases, the task of

sampling and ranking of the opinions by representing all the viewpoints is a complex

task.

In this chapter, we start our analysis by looking at direct correlations between

sentiments of opinions and the demographics of people (e.g., gender, age, education

level, etc.) that generate those opinions. The details of a large-scale sentiment analy-

sis on Yahoo! Answers data is given in Section 3.1. Since the availability of a topical

classification makes it possible to differentiate sentiments attached to a particular

entity according to the context, we investigate this property to obtain a more faceted

representation of the opinions about an entity. Based on the hypothesis of network

diversity is positively associated with receiving more diverse and less redundant infor-

mation, we argue that opinion diversity can also be achieved by diversifying the
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sources of opinions, which is basically finding a set of opinions from various opinion

holders with diverse demographics. We discuss the outlines of such an opinion di-

versification framework in Section 3.2, and leave the practical application as a future

work for those who have access to user profiles of social networks.

3.1 Sentiment Analysis on a Large Scale Q&A Website

Sentiment extraction from online web documents has recently been an active re-

search topic due to its potential use in commercial applications. By sentiment anal-

ysis, we refer to the problem of assigning a quantitative positive/negative mood to a

short bit of text. Most studies in this area are limited to the identification of senti-

ments and do not investigate the interplay between sentiments and other factors. In

this work, we use a sentiment extraction tool to investigate the influence of factors

such as gender, age, education level, the topic at hand, or even the time of the day

on sentiments in the context of a large online question answering site. We start our

analysis by looking at direct correlations, e.g., we observe more positive sentiments on

weekends, very neutral ones in the Science & Mathematics topic, a trend for younger

people to express stronger sentiments, or people in military bases to ask the most

neutral questions. We then extend this basic analysis by investigating how properties

of the (asker, answerer) pair affect the sentiment present in the answer. Among other

things, we observe a dependence on the pairing of some inferred attributes estimated

by a user’s ZIP code. We also show that the best answers differ in their sentiments

from other answers, e.g., in the Business & Finance topic, best answers tend to have

a more neutral sentiment than other answers. Finally, we report results for the task

of predicting the attitude that a question will provoke in answers. We believe that
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understanding factors influencing the mood of users is not only interesting from a

sociological point of view, but also has applications in advertising, recommendation,

and search.

3.1.1 Introduction

The advance of Web 2.0 boosted the creation of personal web content involving

sentiments, e.g., blogs, tweets, and other types of social media. Extraction and analy-

sis of sentiments in this type of content do not only give an emotional snapshot of the

online world but also have potential applications in electronic commerce, where the

marketing strategy of a product might depend on the mood of the customer. Given

both the sociological and financial motivations to understand sentiments, a large body

of research has recently investigated the issues involved in sentiment analysis [105].

Despite the intense interest in sentiment analysis, however, relatively little has

been done to understand the interplay between sentiments and other factors. In this

work, we take the first step in this direction. In particular, we use a state-of-the-

art sentiment extraction tool [123] to extract sentiments from a very large sample of

questions and answers found in Yahoo! Answers.6 Our sample provides a rich source

for sentiments and also has rich meta-data, including demographic details of users

and their degree of experience in the system. To facilitate our analysis, we introduce

the metrics of attitude and sentimentality, which enable us to quantify the direction

(i.e., positive or negative) and strength of sentiments, respectively.

6http://answers.yahoo.com
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Our analysis starts with a large-scale study on the correlation of various features

with the observed attitude and sentimentality. We investigate textual, topical, demo-

graphical, spatial, and temporal features. We then take the analysis one step beyond

and answer questions of the following kind:

• Topical context: Do sentiments depend on the context? For example, is there

a difference in the attitude of answers related to Tiger Woods in the context of

news and events versus the context of sports?

• Class interaction: Who answers how to whom? How do age groups differ in

their answers to each other?

• Experience level: How does one’s experience in Yahoo! Answers affect the ex-

pressed sentiments? Does high experience imply more positive attitude?

• Emotional congruence: How do one’s own sentiments correlate with prior senti-

ments of others? Does a question with a strong sentimentality attract answers

with a similar degree of sentimentality?

• Answer preference: How do sentiments within an answer influence an asker’s

preference? Do people tend to select positive or neutral answers as best answers?

In addition to seeking answers to such questions, we briefly elaborate on the pre-

dictability of sentiments. In particular, we build a machine learning model to predict

the attitude that will be generated in response to a given question.

Some selected findings of our work are the following:

• There is a strong dependency on the topic. Topics such as Beauty & Style at-

tract strong and generally positive sentiments, whereas Science & Mathematics

attracts answers of low sentimentality.
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• Demographic factors suggest a strong influence in our data, with women gen-

erally expressing stronger, more positive sentiments than men, young people

being more positive than older people, and people from predominantly black

neighborhoods expressing relatively more neutral sentiments. We also observe

a trend for more educated people to give less sentimental answers.

• Sentiments show temporal variation. At a monthly level, the most positive

sentiments are observed both during the summer and December. At a daily

level, the most positive sentiments are expressed on Saturday and Sunday. At

an hourly level, the attitude is at its lowest at around five in the morning.

• People have stronger tendency to give neutral answers as they gain more expe-

rience in the online world.

• Best answers differ significantly from other answers in terms of expressed sen-

timents with more neutral answers being preferred in Business & Finance and

more positive ones in News & Events.

The rest of this work is organized as follows. In Section 3.1.2, we provide some

information about the Yahoo! Answers data used in our study. Section 3.1.3 summa-

rizes the framework adopted for sentiment analysis. Potential caveats of our study

are discussed in Section 3.1.4. We investigate the correlation between the sentiments

and features extracted from the data in Section 3.1.5. In Section 3.1.6, we conduct

various analyses involving sentiments. Section 3.1.7, as a representative prediction

task, explores the predictability of the attitude a question will provoke in its answers.

We survey the related work in Section 3.1.8. Finally, Section ?? gives the conclusions

with a brief discussion of potential future work.
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3.1.2 Yahoo! Answers

Background

Yahoo! Answers is the largest collaborative question answering site in the Web.

People ask questions on different topics and share their knowledge, opinions, and

personal experiences as answers to these questions. Questions are manually classified

by askers into topics so that answerers can easily find them. Answerers can find

questions by searching or browsing through a fixed hierarchy of categories.

Every question goes through a best answer selection process. A question remains

open during four days for others to answer. The duration of the process can be

shortened or extended by the asker of the question. The asker has the option to

select a best answer, starting from one hour after the first answer is received, or he

can leave the decision to the community vote. If he does neither and when there is

only a single answer, then the system automatically selects the best answer after a

certain time. Answerers whose answers are selected as the best answer gain experience

points, which provide a motivation for answering others’ questions.

Dataset Characteristics

We use a sample set of questions and answers posted in Yahoo! Answers during a

12-month period, from October 2009 to September 2010. The sample is restricted to

posts originating from the US and contains 34M questions, 132M answers, and 412M

sentences. In this sample, about 2.4M users have participated as either an asker or an

answerer. We were able to obtain self-provided demographic information for about

1.5M users, of which 54.5% are females and 45.5% are males. The users in our sample

are mainly young people, whose ages vary between 15 and 30 (Fig. 3.1 (left)).
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Figure 3.1: Fraction of user population with a certain age (left), population of users
who posted a certain number of questions (right).

In our data, a user posts 5.5 questions and 32.7 answers, on average.7 Populations

of users who posted a specific number of questions or answers both follow a power

law distribution, as shown in Figs. 3.1 (right) and 3.2 (left), respectively. In Fig. 3.2

(left), it is interesting to note the sudden jump at 20 answers, due to many users

aiming to post at least 20 answers since a new level is gained at this point. As seen in

Fig. 3.2 (right), the distribution of the number of answers a question receives is also

highly skewed (on average, 13.3 answers, excluding questions without any answer).

In Yahoo! Answers, there are 1676 editorially defined categories, 26 of which are

top-level categories (e.g., Computers & Internet, Politics & Government). The rest

are either second-level or third-level subcategories. A question is labeled with the

lowest-level category selected by its asker.

7A user can provide only one answer to the same question.
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Figure 3.2: Population of users who posted a certain number of answers (left), number
of questions receiving a certain number of answers (right).

3.1.3 Analysis framework

Our analysis framework involves the following steps. We first process our sample

data to extract questions posted in Yahoo! Answers and their corresponding answers.

We then obtain the demographics information of users who posted these questions and

answers. Within these two steps, we also extract a number of features that facilitate

our analysis. Next, we compute the sentiment scores for individual sentences in the

posts, using a state-of-the-art sentiment analysis software as a black box [123]. Based

on the sentiment scores obtained at the sentence level, we compute two metrics,

referred to as attitude and sentimentality, for different granularities of text. The

details of these steps are provided in the rest of this section.
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Question and Answer Extraction

In our framework, a question is represented by the sentences in the title section of

the question,8 i.e., the sentences in the abstract section, which provides more details

about the question, are ignored. Together with the question text, we also extract

some features related to the question (e.g., question length, category, time/date,

asker’s current experience, and ZIP code). Since the adopted tools cannot handle non-

English text, we omit questions which are submitted to a frontend whose language is

not English.

We represent an answer by the set of sentences it contains. To split answers into

sentences, we use the Stanford parser.9 Very short (less than 5 characters) or long

sentences (more than 400 characters) are ignored. Since the language of the frontend

is not always present in our data, we require that either the language is present and

set to English or that the location is present and set to the US. Only answers given

in response to questions submitted to an English frontend are considered. During

the answer extraction process, we also extract some features related to answers (e.g.,

time/date, answerer’s current experience, and ZIP code).

Demographics Extraction

To post either a question or an answer on Yahoo! Answers, a user must have an

account and be logged in. Although initially Yahoo!-Answers-only accounts existed,

for several years, a general Yahoo! account has been required. For these accounts, we

obtain self-provided registration information, which includes birth year, gender, ZIP

code, and country.

8Typically, the title contains a single question sentence.

9http://nlp.stanford.edu/software/lex-parser.shtml
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Table 3.1: An example question and the first two sentences of the answer

Label Text Scores

Q1.1 Is Scotland a good place to live and
start a small business?

+2/−1

A1.1 Yes, Edinburgh is always in the top
5 places to live in the UK and usu-
ally at the top.

+1/−1

A1.2 One problem regarding setting up a
business is the competition is fierce
and Edinburgh people are unusually
highly qualified.

+1/−2

For users with an existing US ZIP code, we obtain demographic estimates of their

income (as quantified by the annual per-capita income), their education level (as

quantified by the fraction of the population holding a bachelor’s degree or higher), and

even their race via the 2000 Governmental Census Data,10 using the same approach

as in [134]. We classify ZIP codes and their corresponding users under the White,

Black, and Asian classes11 if the fraction of the corresponding race in that ZIP code

surpasses 50%. In all plots and tables, we always report the results for the largest

suitable user population. For example, if a user does not have a valid ZIP code, we

do not involve the user in experiments about income, but the user contributes to

statistics about the age distribution.

10http://factfinder.census.gov/

11We use the terminology used in the US census.
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Sentiment Score Computation

To assign numerical scores to sentiments of an individual sentence, we use the

SentiStrength12 tool developed by Thelwall et al. [123]. This tool simultaneously

assigns both a positive and a negative score to bits of English text, the idea being that

users can express both types of sentiments at the same time, such as in “I love you,

but I also hate you”. Positive sentiment strength scores range from +1 (not positive)

to +5 (extremely positive). Similarly, negative sentiment strength scores range from

−1 to −5. The tool works by assigning scores to tokens in a dictionary which includes

common emoticons. For example, “love” is mapped to +3/−1 and “stink” is mapped

to +1/−3. Modifier words or symbols can boost the score such that “really love” is

mapped to +4/−1 (the same for “love!!” or “looove”). The final positive sentiment

strength for a bit of text is then computed by taking the maximum score among

all individual positive scores. The negative sentiment strength is similarly calculated.

Table 3.1 gives an example of a question, its answer, and the corresponding sentiment

scores.

Fig. 3.13 (left) shows the distribution of sentiment scores given to sentences in

answers. The vast majority of sentences are assigned a neutral +1/−1 sentiment score

(58.26%). Slightly negative (+1/−2) and slightly positive (+2/−1) scores are also

common (6.04% and 15.87%, respectively). Sentences with very strong sentiments,

having either a positive score of +4 or higher or a negative score of −4 or lower, make

up merely 4.18% of the total sentence volume.

12http://sentistrength.wlv.ac.uk/
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Table 3.2: The formulas used for computing the attitude and sentimentality metrics

Metrics
Input type Symbol Attitude Sentimentality
Question qj φq(qj) = ϕ+(qj) + ϕ−(qj) ψq(qj) = ϕ+(qj)− ϕ−(qj)− 2
Asker Ki ΦK(Ki) = 1

|Qi|
∑
qj∈Qi φq(qj) ΨK(Ki) = 1

|Qi|
∑
qj∈Qi ψq(qj)

Sentence in an answer s` φs(s`) = ϕ+(s`) + ϕ−(s`) ψs(s`) = ϕ+(s`)− ϕ−(s`)− 2
Answer to a question Ak ΦA(Ak) = 1

|Sk|
∑
s`∈Sk φs(s`) ΨA(Ak) = 1

|Sk|
∑
s`∈Sk ψs(s`)

Answerer Ri ΦR(Ri) = 1
|Pi|

∑
Ak∈Pi ΦA(Ak) ΨR(Ri) = 1

|Pi|
∑
Ak∈Pi ΨA(Ak)

Answer set of a question Aj ΦA(Aj) = 1
|Aj |

∑
Ak∈Aj ΦA(Ak) ΨA(Aj) = 1

|Aj |
∑
Ak∈Aj ΨA(Ak)

Metrics: Attitude and Sentimentality

Before introducing the metrics of attitude and sentimentality, we introduce some

notation. We use qj, s`, Ak, Aj, Ki, and Ri to represent the basic types in our data:

a question, a particular sentence within an answer, an answer given to a question, the

set of answers given to question qj, an asker, and an answerer, respectively. We also

use notation Sk, Qi, and P i to denote the set of sentences in Ak, the set of questions

posted by asker Ki, and the set of answers posted by answerer Ri, respectively.

Positive and negative sentiment scores generated by the sentiment analysis software

for a given question qj are denoted by ϕ+(qj) and ϕ−(qj). Similarly, ϕ+(s`) and ϕ−(s`)

denote the positive and negative sentiment scores for a given sentence s`.

Based on this notation, we now define the attitude and sentimentality metrics.

The attitude metric computes the inclination towards positive or negative sentiments.

The sentimentality metric computes the amount of sentiments. In a sense, the former

metric indicates the sign of sentiments while the latter indicates their magnitude.

These metrics are computed by the formulas shown in Table 3.2, for different fields of

the data: question, asker, sentence in an answer, answer, answerer, and set of answers
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Figure 3.3: Distribution of sentiment scores for sentences in answers (left), average
attitude and sentimentality for different web datasets (right).

to a question. All results in the rest of the work are reported by averaging the metrics

shown in Table 3.2. At the beginning of each section, we indicate the specific formula

we used in the experiments related to that section.

3.1.4 Caveats

Inferring Demographics

Certain online user attributes (e.g., race) can be inferred by aggregating real-life

data, obtained from online Web resources. In our work, we aggregate the online

data of people living in a region with a specific ZIP code to infer certain attributes

of Yahoo! Answers users who provided the same ZIP code. Obviously, this kind of

an inference can be quite noisy, especially if the demographical classes within a ZIP

code are uniformly distributed (e.g., almost equal number of males and females in

every ZIP code) or if the distribution of classes across the ZIP codes is highly skewed

(e.g., very few regions where the Asians are the dominant race). We believe that
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the education level and income attributes, which we infer based on ZIP codes, are

relatively less error-prone in this respect as the distribution of these attributes are

typically neither uniform within a ZIP code nor very skewed across different ZIP

codes.

Sentiment Analysis

We use sentiment analysis as the main technique to quantify the attitude and

sentimentality. Obviously, there is no perfect sentiment analysis tool to date. The

tool we use indeed performs a simple syntactical analysis over sentences rather than

a sophisticated semantic analysis. However, we still hope the erroneous cases to be

minimal as the accuracy of the tool has been shown to be good enough in another

domain [123]. Moreover, the vast amount of data we use helps supporting the signif-

icance of the reported results.

User Bias

We emphasize that our results cannot be generalized to the entire population of

the world as the user sample we have in our data may have a biased distribution.

In particular, certain demographic classes may be under represented in the Internet.

Even if they are represented in the Internet with similar likelihood, their distribution

in Yahoo! Answers may be skewed. Finally, although they might be equally well

presented in Yahoo! Answers, the rate at which they contribute to the posts may differ.

Consequently, our findings are limited to the Yahoo! Answers users who actively

participate in the questions and answers.
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Site Bias

The generalizability of our results to other web sites may be questioned. To reveal

any potential bias, we compute the attitude and sentimentality metrics over six web

datasets,13 each with different characteristics. The selected datasets include ques-

tions and answers from Yahoo! Answers, movie reviews from Ciao, forum discussions

from MySpace, short messages from Twitter, comments on news-related posts from

Slashdot, and news in English from Yahoo! News. For this experiment, we randomly

sample 40K sentences from each dataset and compute the attitude and sentimentality

metrics by averaging the respective scores over all sentences.

According to Fig. 3.13 (right), the Ciao dataset has the most positive attitude

and a relatively higher sentimentality. The most negative attitude is observed in the

Slashdot dataset. The Yahoo! Answers dataset stands very close to the average over all

datasets, in terms of both the attitude and sentimentality metrics. This observation

further justifies our use of Yahoo! Answers as a representative data source.

3.1.5 Feature analysis

We group the features used in our analysis under five headings: textual, topical,

demographical, spatial, and temporal features (Table 3.3). All features are extracted

from both questions and answers, except for the textual features, which are only

extracted from questions. The rest of the section investigates the correlation of the

extracted features with the previously defined attitude and sentimentality metrics.

Due to space constraints, a detailed analysis of certain features is omitted. We note

13http://caw2.barcelonamedia.org/node/7
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Table 3.3: Summary of extracted features

Applicable to
Type Feature Range Question Answer

Textual

Question length N

Yes No
# of ? symbols N
# of ! symbols N
First word String

Topical
Top category 1–26

Yes Yes
Leaf category 1–1676

Demog.

Gender {M,F}

Yes Yes
Age N
Race {A,B,W}
Income R+

Educ. degree 0-100%
Experience N

Spatial ZIP code 00000–99999 Yes Yes

Temporal

Month 1–12

Yes Yes
Day of month 1–31
Day of week 1–7
Hour of day 1–24

that, in all results presented in this work, we report only the findings that are sta-

tistically significant according to a two-tailed t-test for equality of means at the 95%

confidence level. Similarly, we only display results where all of the three pairs (max-

imum, median), (maximum, minimum), and (median, minimum) differ at the 95%

confidence level or above. This ensures that the reported results are “meaningful”

and not merely noise.

Textual Features

The results reported in this section are obtained by averaging the φq and ψq values

over all questions.

Question length. The sentimentality correlates positively with the question

length in words (Fig. 3.4 (left)). This is somewhat expected as the probability of
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Figure 3.4: Attitude and sentimentality as the question’s length (left) and the number
of question marks it contains (right) increases.

having sentimental words increases as new words are added to the question.14 Inter-

estingly, however, the attitude demonstrates a decreasing trend. This might suggest

that shorter questions are more likely to contain positive sentiments and negative

sentiments are more common in longer questions.

Number of question marks. We observe relatively higher sentimentality and

attitude in questions that contain multiple question marks (Fig. 3.4 (right)). Both

metrics reach a maximum value when there are three or four question marks in the

question. This increase is simply because of question titles that contain multiple

question sentences (remember that we do not split questions into sentences). Inter-

estingly, however, the further increase in the number of question marks results in a

decrease in the metrics.

14Recall that the sentiment scores of a sentence are cumulated by taking the maximum over the
words in the sentence. Hence, scores are not normalized by the sentence length.
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Table 3.4: Attitude and sentimentality for the most popular question starting words

Questions Answers

Word Volume (%) φq ψq ΦA ΨA

What 13.2 0.16 0.45 0.21 0.68
How 10.8 0.04 0.36 0.16 0.60
I 5.6 0.07 0.69 0.17 0.70
Is 4.9 0.05 0.62 0.14 0.69
Why 4.4 -0.17 0.66 -0.01 0.75
Can 3.4 0.10 0.38 0.14 0.59
Do 3.1 0.15 0.67 0.18 0.74
Does 2.2 0.11 0.55 0.18 0.69
Where 2.1 0.13 0.28 0.31 0.55
My 2.0 -0.09 0.70 0.07 0.70

Starting words. Table 3.4 shows the attitude and sentimentality of questions

with the most popular starting words, listed in decreasing order of popularity. Ac-

cording to the table, the only words with negative attitude are “Why” and “My” while

the rest imply mostly positive attitude. In terms of sentimentality, questions starting

with words “What”, “How”, “Can”, and “Where” have the lowest sentimentality. In

general, we observe that questions seeking information have lower sentimentality than

those asking for opinions.

Topical Features

The results reported in this section are obtained by averaging the φq and ψq values

of questions and also by averaging the φA and ψA values of answers under specific

categories.

Category. Fig. 3.5 shows the distribution of questions posted in the 16 most

popular top-level and leaf-level categories. Table 3.5 shows the categories with the
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Figure 3.5: Most popular top-level (left) and leaf-level (right) categories.

Table 3.5: Highest and lowest attitude values for top-level and leaf-level categories

Top-level category Leaf-level category
Questions Answers Questions Answers

Category φq Category ΦA Category φq Category ΦA

H
ig

h
es

t

Beauty & Style 0.28 Beauty & Style 0.43 Baby Names 0.46 Baby Names 0.61
Dining Out 0.24 Business & Finance 0.30 Beauty & Style 0.44 Valentine’s Day 0.54
Food & Drink 0.21 Dining Out 0.24 Valentine’s Day 0.42 Makeup 0.51
Arts & Humanities 0.20 Pregnancy & Parenting 0.24 Rock and Pop 0.36 Christmas 0.48
Travel 0.18 Food & Drink 0.22 R&B & Soul 0.36 Fashion & Access. 0.47

L
o
w

es
t

Society & Culture 0.02 Health 0.05 Psychology -0.38 Law Enforcement -0.10
Politics & Government -0.13 Environment 0.04 Injuries -0.40 Spam & Bulk Mail -0.11
News & Events -0.14 Social Science -0.03 Heart Diseases -0.52 Pain Management -0.11
Social Science -0.21 Politics & Government -0.07 Mental Health -0.71 Current Events -0.14
Health -0.22 News & Events -0.08 Pain Management -1.35 Boxing -0.19

highest and lowest attitude, both for questions and answers. Similarly, Table 3.6

shows the categories with the highest and lowest sentimentality, again both for ques-

tions and answers. These results indicate that both the attitude and sentimentality of

questions and answers are highly influenced by the category in which they are posted.

Since the dependence of the attitude and sentimentality on the topic is so pro-

nounced, we test whether the topical differences induce all other differences. That
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Table 3.6: Highest and lowest sentimentality values for top-level and leaf-level cate-
gories

Top-level category Leaf-level category
Questions Answers Questions Answers

Category ψq Category ΨA Category ψq Category ΨA

H
ig

h
es

t

Family & R.ships 0.91 Family & R.ships 0.91 Pain Management 1.74 Poetry 1.02
Social Science 0.81 Social Science 0.83 Mental Health 1.25 Mental Health 0.97
Health 0.68 Beauty & Style 0.78 Psychology 1.01 Singles & Dating 0.94
Society & Culture 0.62 Pregnancy & Parenting 0.78 Friends 0.95 Friends 0.92
News & Events 0.62 Business & Finance 0.76 Family & R.ships 0.95 Family & R.ships 0.91

L
o
w

es
t

Home & Garden 0.32 Cars & Transportation 0.48 Yahoo! Mail 0.19 Astronomy&Space 0.36
Business & Finance 0.32 Home & Garden 0.47 Embassies & Consul. 0.18 Biology 0.35
Consumer Electronics 0.32 Science & Mathematics 0.46 Packing & Prep. 0.17 Accounts & Pass. 0.35
Cars & Transportation 0.30 Local Businesses 0.46 Addr. Book & Cal. 0.17 Geography 0.32
Local Businesses 0.27 Comp. & Internet 0.45 External Mail 0.17 Yahoo! Mail 0.32

is, we test if the differences between classes can be fully explained by the fact that

class members have different topical interests. To test this hypothesis, we look at

demographic differences for the attitude, averaged over all sentences in the set of

answers, on a per-topic basis. Table 3.7 shows the difference of the average attitudes

for a selection of topics. In the table, differences that are significant at the 1% level

for a two-sided t-test for equality of means are indicated in bold font. The attitude

differences correspond to the numerical difference for the attitude of each of the fol-

lowing demographic group pairs: female versus male genders, [10, 20] versus [70, 80]

age intervals, Black versus White races, and [0%, 5%) versus [50%, 55%) of popula-

tion having a bachelor’s degree or higher. The main finding of this experiment is that

topical differences are not sufficient to explain the differences between demographic

groups and that, even for the same topic, different groups express different sentiments.
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Table 3.7: Differences in demographical features on a per-topic basis

Topic Gender Age Race Ed. level

Beauty & Style 0.111 0.164 −0.049 0.028
Business & Fin. −0.025 0.119 0.010 −0.047
Arts & Human. 0.180 0.233 0.015 0.103
Pregn. & Parent. 0.154 0.172 −0.020 −0.081
News & Events 0.015 −0.018 0.036 −0.024
Games & Recr. 0.090 0.015 −0.008 −0.003
Science & Math. −0.001 0.103 0.018 0.034
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Figure 3.6: Attitude and sentimentality based on askers’ (left) and answerers’ (right)
age.

Demographical Features

The results of this section are obtained by averaging the ΦK and ΨK values of

askers and also by averaging the ΦR and ΨR values of answerers in a certain demo-

graphic group.

Gender. Our analysis suggest that women are more sentimental when answering

a question than men (on average, ΨR = 0.76 and ΨR = 0.66 for women and men,
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respectively). We also observe that, in terms of attitude, men are more neutral,

whereas women have more positive attitude in their answers (on average, ΦR = 0.23

and ΦR = 0.13 for women and men, respectively). We observe a similar behavior in

the questions they post.

Age. Fig. 3.6 shows the attitude and sentimentality values for askers and answer-

ers of varying age. We observe that, in general, the sentimentality decreases with

increasing age. We also observe a trend towards negative attitude as the reported age

of the user increases.

Race. We observe that users from predominantly Black ZIP codes have more

neutral attitude values (on average, ΦR = 0.19, ΦR = 0.17, and ΦR = 0.19, for Asian,

Black, and White, respectively). Users from predominantly Asian ZIP code are less

sentimental in both asking and answering among these race groups (on average, ΦR=

0.67, ΦR=0.71, and ΦR=0.72, for Asian, Black, and White, respectively).

Education level. As the education level increases, the data suggest that the

sentimentality of askers tend to increase (Fig. 3.7). However, answerers become more

neutral as education level increases. On the other hand, the attitude shows a similar

increasing trend for both askers and answerers with increasing education level. Irreg-

ularities in the 55%–60% interval are due to the relatively high volume of users with

the self-provided ZIP code 90210 (Beverly Hills).

Spatial Features

The results of this section are obtained by averaging the ΦK and ΨK values of

askers and by averaging the ΦR and ΨR values of answerers who reported a specific

ZIP code.
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Figure 3.7: Attitude and sentimentality based on askers’ (left) and answerers’ (right)
education level.

ZIP code. We do not observe a clear effect of the location on sentimentality.

Hence, we only display the two-digit ZIP code prefixes and corresponding states

where the highest and lowest sentimentality values are observed (Fig. 3.8).15 The

attitude distribution is not very conclusive either, but it gives some hints about the

user profiles of certain states.

Temporal Features

The results in this section are obtained by averaging the ΦA and ΨA values of all

answers posted in a specific time interval. In all cases, the Eastern Time Zone16 is

used as the timestamps in our data are in this timezone.

15Note that ZIP code prefixes typically correspond to geographically adjacent regions. See http:

//en.wikipedia.org/wiki/List_of_ZIP_code_prefixes.

16http://en.wikipedia.org/wiki/Eastern_Time_Zone
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Figure 3.8: Attitude and sentimentality based on askers’ (left) and answerers’ (right)
location.

Month. The attitude and sentimentality show significant variation across the

months. Answers posted during the summer and in the holiday season (i.e., De-

cember) have higher sentimentality and more positive attitude. Both the lowest

sentimentality and attitude are observed in March.

Day of month. The variance over days of the month is very minor. Hence, we

omit a discussion on this feature.

Day of week. Interesting behaviors are observed for day of the week. Answers

posted during the weekends and on Friday are more sentimental than those posted

during the weekdays (Fig. 3.9 (left)). The attitude moves from positive to neutral

as the days go from Sunday to Thursday. Then, it changes its trend on Friday and

Saturday.

Hour of day. Sentimentality shows a slightly increasing trend during the day

(Fig. 3.9 (right)). Especially, a sharper increase is observed between the 18:00 and

23:00 hours, followed by a decreasing trend throughout the night. The attitude
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Figure 3.9: Answers’ sentimentality and attitude versus day of week (left) and hour
of day (right).

reaches its lowest value around 5:00 in the morning, which might correspond to an

average of 3:00–4:00 on a national level when correcting for the fact that we use the

Eastern Time for all users.

3.1.6 Further analyses

We determine five different concepts, for which we deepen our analysis on the atti-

tude and sentimentality: topical context, class interaction, experience level, emotional

congruence, and answer preference.

Topical Context

As mentioned in Section 3.1.5, the topical context plays an important role on the

attitude and sentimentality of answers (Tables 3.5 and 3.6), i.e., the interpretation of

a concept may differ according to the context. The same concept may be mentioned

in a very positive sense in one category while the attitude can be quite negative

in another. As a representative example, in our sample, the opinions about “Tiger
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Figure 3.10: Class interaction: Attitude (left) and sentimentality (right) of answers
versus ages of askers and answerers.

Woods” show high variation based on the context of the discussion.17 Questions

about him receive answers with negative attitude in the News & Events (φs=−0.10)

category, whereas the answers are quite positive in the Sports (φs=0.18) and Games

& Recreation (φs= 0.35) categories. We observe a neutral attitude in Social Science

(φs=−0.02) and Family & Relationships (φs=0.04) categories. We further quantify

the influence of the topical context in Section 3.1.7.

Class Interaction

Gender. We observe that the askers are more likely to receive answers from

users with the same gender. Especially, female askers receive most answers from

other females (%63.5). Female answerers have more positive attitude when the asker

is a female (ΦR = 0.17). According to our analysis, the lowest attitude is observed

when both the asker and answerer are males (ΦR=0.03).

17In our case, opinions refer to sentences that include a named entity extracted with the Stanford
CoreNLP tool (http://nlp.stanford.edu/software/corenlp.shtml).
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Figure 3.11: Experience level: Attitude and sentimentality for questions (left) and
answers (right) based on users’ experience.

Age. Younger people post and receive answers with a more positive attitude

(Fig. 3.10). The attitude reaches the maximum when both the asker and answerer

are less than 20 years old. In particular, people are likely to respond to people of

the same age in a more positive manner. On the other hand, we do not observe a

sentimentality change in answers given to different age groups.

Income. When both the asker and answerer are within the 30K–50K income

range, the attitude of answers is slightly more positive. Otherwise, we do not observe

any strong trend with the income level.

Experience Level

As discussed in Section 3.1.2, Yahoo! Answers awards points to its users for an-

swering questions, with additional points being awarded for best answers. The total

number of accumulated points can hence be seen as an indicator of the experience of
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Figure 3.12: Emotional congruence: Questions’ positive and negative sentiments ver-
sus the attitude (left) and sentimentality (right) of received answers.

the user in the system. Herein, we try to understand whether more experienced users

differ in the sentiments they express in their questions and their answers.

As far as the questions are concerned, we observe that users with very little or no

experience tend to issue the most positive questions, with the attitude of the question

decreasing with an increase in experience (Fig. 3.11 (left)). On the other hand, as the

experience increases, answerers become less sentimental in their answers (Fig. 3.11

(right)). This may indicate a correlation between the experience and the objectivity

of answerers. This is also supported by the observation that the attitude becomes

less positive as the experience increases.

Emotional Congruence

Fig. 3.12 shows the attitude and sentimentality of answers that are posted in

response to questions with different positive and negative sentiment scores.18 In

general, there is a strong positive correlation between the sentimentality of initial

18The data point (−5, 5) is omitted from the two plots due to the very low volume of sentences.
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Table 3.8: Answer preference: Answers selected as the best answer differ from other
answers in terms of both attitude and sentimentality

Answers
Category Best Other Diff.

A
tt

it
u

d
e

Business & Finance 0.16 0.32 -0.16
News & Events -0.07 -0.14 0.08
Environment 0.05 -0.01 0.07
Entertainment & Music 0.21 0.15 0.06
Health -0.01 0.05 -0.06

S
en

ti
m

en
t. Business & Finance 0.47 0.77 -0.30

News & Events 0.68 0.76 -0.08
Travel 0.53 0.61 -0.08
Local Business 0.44 0.51 -0.07
Entertainment & Music 0.74 0.67 0.06

questions and received answers. That is, highly sentimental questions are more likely

to receive very sentimental answers and vice versa. The way answers are created

is also determined by the attitude of questions. More negative questions receive

answers with negative attitude and vice versa, indicating a trend towards “emotional

congruence” between the asker and the answerer.

Answer Preference

In general, the best answers, which are preferred over the other answers, have

lower sentimentality (ΨA=0.67 versus ΨA=0.71, on average). At the same time, the

best answers are more likely to be selected from answers with a more positive attitude

(ΦA = 0.16 versus ΦA = 0.14, on average). For certain categories, the preference is

even stronger (Table 3.8). As a striking example, in the Business & Finance category,

the best answers are more inclined towards those with low sentimentality and neutral
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attitude. On the other hand, in the Entertainment & Music category, answers with

higher sentimentality and more positive attitude seem to be preferred by the users.

3.1.7 Attitude prediction

Is it possible to predict the attitude or sentimentality of the answers a particular

question will attract before the answers are posted? Accurate prediction of attitude

and sentimentality can have different practical use cases. For example, questions that

are predicted to generate high sentimentality can be boosted in visible areas (in the

main page or as hot topics) to increase page views. As another example, questions

that have the potential to lead to very negative attitude in answers may be sent to

moderators, beforehand.

Herein, we only focus on the problem of predicting the attitude in future answer

posts. We formulate this particular task as a machine learning problem. In general,

this is a very challenging task as the only information comes from the question and

the asker. Features about the answerer, which the previous sections found to be

correlated with the attitude in the answer, are not used as they are not available

until the answers are posted. In addition to the features in Table 3.3, we also extract

and use positive and negative sentiment scores of questions as features, which play a

relatively important role in the prediction.19 In our task, the value we try to predict

for each question instance is the average attitude of the answers given to a question,

i.e., average ΦA.

We test the performance of the model over a dataset containing eight million

question instances, obtained after filtering out questions whose askers’ demographics

19We place these two features under the textual features category as they are obtained through
text processing.
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Table 3.9: Feature importance

Feature Importance

Leaf-level category 100.0
Negative sentiment score 63.0
Positive sentiment score 39.7
Starting word 19.7
Number of ! symbols 12.0
Month 9.1
Question length 7.2
Gender of asker 6.7
Age of asker 3.7
Experience of asker 2.2

information is missing. We train our machine learning model using gradient boosted

decision trees [40, 137] and test on our data via 10-fold cross-validation.20 The 10

most important features, as provided by the learning tool, are shown in Table 3.9.

We adopt the root mean square error (RMSE) to evaluate the performance. As

the baseline technique, we use a simple yet effective predictor which always predicts

the average attitude value observed in the training data. We build our classifier using

different combinations of feature types to observe their individual contributions to

the performance.

Table 3.10 shows the improvement, relative to the baseline, achieved by different

classifiers trained with different combinations of feature types. When only the topical

features are used, the prediction performance can be improved by 3.14%. Textual

features also significantly improve the performance. The contributions of the asker’s

20In training, we set the number of trees to 40, the number of leaf nodes per tree to 40, and the
learning rate to 0.5.
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Table 3.10: Prediction performance

Classifier RMSE Improv.

Baseline 0.5261 –

Topical 0.5096 3.14
Topical + Textual 0.4964 5.65
Topical + Demographical 0.5091 3.23
Topical + Spatial + Temporal 0.5091 3.23
Topical + Textual + Demographical 0.4962 5.68
Topical + Textual + Spatial + Temporal 0.4960 5.72
Topical + Demographical + Spatial + Temporal 0.5086 3.35
Topical + Textual + Demographical + Spatial + Temporal 0.4939 6.12

demographics and spatio-temporal features are relatively low. When all features are

used the classifier can improve the baseline by 6.12%.

3.1.8 Related work

A large body of work so far have dealt with different aspects of sentiment analysis,

mainly sentiment extraction [1, 9, 32, 138], classification [33, 106, 129], retrieval [42,

43, 145], summarization [11, 85], and presentation [50]. The core application areas are

finance [13, 32, 34], reviews [33, 106, 129], politics [66, 125], and news [45]. Herein,

we omit a discussion of these works and focus only on works that are directly relevant

to our work. Interested reader may refer to [105], for a detailed survey on sentiment

analysis.

A large number of studies apply sentiment analysis to Twitter [12, 122]. These

works differ from ours as they omit demographic factors and Twitter messages are

explicitly written in a non-anonymous manner for mass consumption. The “We feel

fine” project21 [61] is probably the most closely related work. In that project, the

21http://www.wefeelfine.org/
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authors use a large number of blog posts and, wherever possible, annotate the posts

with demographic information provided in public user profiles as well as weather data

for profiles from which also the location could be extracted. The focus of their work

is on interface design and on offering experimental data visualization. However, they

also observe temporal patterns over the course of a day (lowest fraction of “joy”

sentiments at night) and over the course of a week (high fraction of “relaxed” during

the weekend). Similar to our finding, they observe a trend for older people to be less

negative. As data mining is not their main focus, however, their quantitative findings

are less comprehensive than ours and do not include features such as educational level

or race in their analysis.

Apart from demographically annotated blogs, Facebook data is often used as

it offers rich per-user profile information. Typically, sentiment analysis is applied

to status messages of users. It has been observed, for example, that users with a

relationship status “in a relationship” or “married” are more likely to have a positive

status message [17].

We note that neither Facebook status messages nor blog posts have the question-

response interaction available in our data, which allows investigation of the effect of

the original sentiment on the induced sentiments in answers. A tendency towards

“emotion homophily” for comments left by friends on blogs is observed in [121]. The

gender differences that we observed are independently observed in a small-scale study

using MySpace blog posts [124]. Given that both blog posts and status messages on

Facebook are not anonymous and written for explicit consumption by an ideally

large group of people, it is surprising to see the general trends of sentiments to be

re-confirmed in a question answering site.
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3.2 Demographics-Based Opinion Diversification

Increasing popularity of personal web content via blogs, tweets, and other types of

social media has boosted the generation of public opinions on certain famous people

(politicians, singers, etc.), locations (cities, countries, etc.) and brands (products,

companies, organizations, etc.). Search and retrieval of opinions on a subject is

extremely useful for a number of application areas, including reputation management.

However, due to the fact that there might be enormous number of opinions on a

subject, or the opinions are skewed towards a viewpoint in some cases, the task of

sampling and ranking of the opinions by representing all the viewpoints is a complex

task.

Because of the information overload, traditional web search and text retrieval

methods fail to identify and select a set of diverse but representative opinions; there-

fore, they commonly return unsatisfactory results. For example, opinions written from

the same location about a mobile network operator can be all positive; although, peo-

ple in another area can have difficulties connecting to that network. Another example

is, the opinions about a singer can be dominated by positive ones if they are mostly

written by a specific age group. Traditional similarity-based techniques are likely

to miss uncommon opinions in those scenarios, while diversification algorithms are

proposed to solve the problems.

Diversity became a popular topic in the last decade, and studied for spatial

data [59, 69], text retrieval [25], web search results [4] and product recommenda-

tion [140, 148]. In opinion search, however, understanding the semantics of a sentence

and diversifying opinions accordingly still remains as an unsolved problem. Based on
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the hypothesis of “network diversity is positively associated with receiving more di-

verse and less redundant information” [7], we argue that opinion diversity can also

be achieved by considering the diversity of the sources of opinions, which is basi-

cally the metadata including demographics of the opinion holders and other relevant

information.

In this study, we first formalize the diversification problem on opinion-user space,

then reduce it to a well-known problem called Maximal Marginal Relevance [18] and

attack the problem with an heuristics approach. In order to test the proposed idea

on a real-world problem, we propose a framework to extract high-quality opinionated

sentences from a large Q&A website. We also present metrics for sentiment analysis in

order to distinguish factual sentences from opinions. Based on the metadata extracted

along with the opinions and similarity metrics defined, we select a diverse set opinions

for a given entity (product, person, location, or organization) using a state-of-the-art

diversification algorithm.

As a motivating example, we show how the mean and standard deviation of the

metrics for sentiment analysis on diverse opinions change for given entity queries.

Since it is possible to diversify the opinions based on a single or rather a combination

of the attributes (age, gender, date, age and date, etc.), we compare those sets of

attributes that are used for diversification on person, location and organization entity

queries. We diversify opinions based on different demographic attributes, such as

age, gender, income, education level, etc. Besides, our framework can also diversify

opinions based on location, sentiment, and in time. We propose metrics to evaluate

our results. We compare the diverse opinions with top-k results.
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3.2.1 Application areas

It’s been discussed that there are different dimensions of diversity: diversity of

resources, topics, viewpoints, demographics, language, location, and time [53]. There-

fore, it is possible to diversify opinions regarding the attributes of the writer and the

opinion itself. Examples of diversifying such attributes and the related application

areas are given below:

Demographic (age, gender, race, etc.) diversity: People from different

age categories (teenagers, middle-aged, old, etc.) may have different opinions about

popular singers, politicians, or even products or companies. Those variations may

also occur when genders are compared.

Sentiment-based diversity: Online shopping websites allow its users to rate

products along with their reviews, and the most helpful positive and negative com-

ments are often displayed next to each other. Those ratings are generally good indi-

cations of the polarity of the reviews.

Spatial diversity: Opinions on a politician may differ based on the region, city,

state, or even country.

Temporal diversity: For the reputation management, the change of people’s

opinions along time is typically important. For example, the opinions about Obama

reaches its peak before and after the election time, but the volume reduces over time.

Categorical diversity: Opinions on “Tiger Woods” show high variation based

on the context of the discussion, such as in Sports, Video games, and News & Events

categories.
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3.2.2 Preliminaries

Before formulating the problem, let us define some basic components [95]:

opinion holder: person with some demographic information; generally a website

user.

entity: an object, i.e., product, person, organization, location, etc., about which

people express opinions.

opinion: a view, attitude, or appraisal towards a certain entity.

opinionated sentence: a sentence that explicitly or implicitly expresses positive or

negative opinions.

3.2.3 Opinions vs. facts

Identifying whether a sentence is an opinion or fact is a well-known and unsolved

problem in NLP. Based on the definition of opinionated sentences (see Section 3.2.2),

we hypothesize that the opinionated sentences are more likely to have non-zero sen-

timentality (ϕs(s`)> 0) compared to the factual sentences. We test this hypothesis

in two step:

First, average attitude and sentimentality metrics are computed from 40K randomly-

sampled sentences over seven web datasets.22 Assuming the Wikipedia abstracts are

generally factual sentences, we show that abstracts composed of factual sentences

have the least sentimentality among some representative datasets on the web (Fig-

ure 3.13). Therefore, eliminating sentences with non-zero sentimentality (ϕs(s`) > 0)

will possibly leave us opinionated sentences.

22http://caw2.barcelonamedia.org/node/7
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Figure 3.13: Web datasets with different characteristics (left), and average attitude
and sentimentality of sampled sentences (right).

Next, we test whether this assumption works for the sentences retrieved from Y!

Answers. We manually labeled 1000 sentences as either factual or opinionated, and

check if we lose opinions with ϕs(s`) = 0, or keep factual sentences with ϕs(s`) > 0.

Our experiments show that the assumption “opinionated sentences have sentimental-

ity > 0” is often satisfactory to build an opinion database for our opinion diversifica-

tion task.

3.2.4 Opinion dataset generation

Collecting opinions for this study requires using a large-scale dataset with rich

information regarding sentiments. Although blog and social media (e.g., Twitter)

datasets seem very suitable, they turn out to be inadequate in our context due to

the unavailability of personal information about the creators of opinions. Hence, in

this work, we prefer to use a large question-answer dataset obtained from Yahoo! An-

swers. This dataset contains demographics and experience information about users.

Moreover, it includes a fairly large amount of content with sentiments and is also
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suitable to explore different views on a subject. An analysis of Yahoo! Answers is

given in [67].

To generate an opinion dataset with high-quality sentences from Yahoo! Answers

data, a large-scale and multi-step processing is required. We will not go into the

details due to the page limitations; however, we try to give a complete view of the

overall extraction process below. An overview of the steps are given in Figure 3.14.

Yahoo!
Answers

Y! Answers
Questions

Question
Extractor

Answer
Extractor

Entity
Extractor entities

answers
w/

attributes

questions
w/

attributes

1 2

3

JoinY! Answers
Users

Demographics
Extractor

users
w/ demographics

5

Sentiment
Analysis

4

sentences w/
answer, question, 

user attributes, and 
sentiment analysis

6

Figure 3.14: Overview of the sentence and attribute extraction process on Yahoo!
Answers.

First, all named entities (i.e., persons, organizations, locations) are detected from

answers with Stanford Named Entity Recognizer (NER) [39]. Based on the empirical

results, entities with maximum of five words (we ≤ 5) and at least 50 occurrences

(fe ≥ 50) are selected for the database.
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Using the set of selected entities, answers in English are split into sentences, and

the ones containing at least one entity are kept for further processing. If the sentence

begins with a conjunction (e.g., but, P.S., frankly, etc.) or a pattern similar to

“I believe [that]”, this part is removed. After improving the quality, if the length

of the sentence is appropriate (i.e., 5 ≤ |ws| ≤ 70 and |chs| ≤ 400) we keep the

sentence along with some textual attributes including the matched entity, its position

in the sentence, number of occurrences, etc. Note that only opinionated sentences

with a positive sentimentality (ψs(s`) > 0) are included in the opinion database (see

Section 3.2.3).

For the selected sentences, the metadata of the answer that the sentence belong

to, and of the question that the answer belong to, are also extracted. The metadata

includes date and time when the answer is written, answerer’s user ID, and the cat-

egory of the corresponding question. With the corresponding Yahoo! accounts, we

obtain self-provided registration information, such as birth year, gender, ZIP code,

and country. For users with an existing US ZIP code, we obtain demographic esti-

mates of their income (as quantified by the annual per-capita income), their education

level (as quantified by the fraction of the population holding a bachelor’s degree or

higher), and even their race via the 2000 Governmental Census Data23 using the same

approach as in [134]. Details of demographic information extraction are discussed

in [67].

The final opinion database contains opinionated sentences with rich metadata of

demographic (age, gender, estimated income, estimated education level, and race),

23http://factfinder.census.gov/
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spatial (ZIP code), temporal (date and time), textual (entity, position, number of

occurrences), and categorical information.

3.2.5 Proposed diversification framework

For a given entity (object), top-k search finds the opinions based on similarity

defined between an opinion and the entity (e.g., number of occurrences, most recent

ones, most viewed, etc.). However, the results are generally unsatisfactory since they

do not represent the whole opinion space or summarize well.

Demographics-based opinion diversification let users or companies summarize the

opinions on an entity (generally product or person) based on geographic location,

demographic information, and/or along time. The problem is formulated in Defini-

tion 3.2.1.

Definition 3.2.1. (α, β, γ)-diverse top-k search. Given a set of opinions X, each

written by a single opinion holder in Y , and an entity as query q, (α, β, γ)-diverse

top-k search finds a multiset of k opinions and its holders, R∗ = {(xi, yi) : xi ∈

X, yi ∈ Y, 1 ≤ i ≤ k}, such that

R∗ = argmax
R⊆(X×Y )
|R|=k

[α
k∑
i=1

s(q, xi)

+
2β

k(k − 1)

k∑
i=1

k∑
j=i+1

(1− s′(xi, xj))

+
2γ

k(k − 1)

n∑
i=1

n∑
j=i+1

(1− s′′(yi, yj))] (3.1)

where n is the number of opinions holders who wrote k-selected items. α, β, γ are

relevance, item-diversity, and source-diversity ratios, respectively. s, s′, s′′ are entity-

to-opinion, opinion-to-opinion, and user-to-user similarity functions, respectively.

87



q
query

X Y
x1

x4
x5

x3
x2

y1

y4
y5

y3
y2

f : X!Y

opinions users

query-to-opinion
s(q,xi )

opinion-to-opinion
s'(xi ,xj )

user-to-user
s''(yi ,yj )

Figure 3.15: Similarity functions and relationships between opinions, opinion holders,
and the query.

The objective is to find k opinions in (X × Y ) which are relevant to q (depending

on α), but diverse with respect to the opinions (depending on β), and their holders

(depending on γ). Obviously, α is a dependent coefficient, and can be obtained with

α = 1− (β + γ).

General concept of all user-generated opinions/reviews can be represented with the

following graph relation: f : X → Y is injective, assuming that each opinion xi ∈ X

has a unique id, and is generated by only one user yi ∈ Y , even if two opinions

have the exact same content. This one-to-one property lets us use the attributes of

the users (demographics) as a property of the generated content itself. Under this

assumption, (α, β, γ)- diverse top-k search problem reduces to Maximal Marginal

Relevance (MMR) problem [18], which can be solved with:

R∗ = argmax
R⊆(X×Y )
|R|=k

[(1− λ)
k∑
i=1

s(q, xi) +
2λ

k(k − 1)

k∑
i=1

k∑
j=i+1

(1− s((xi, yi), (xj, yj)))] (3.2)

where λ = 1− α = β + γ, and s is a linear combination of s′ and s′′ with respect to

β and γ.
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The problem of maximizing diversity of a result set is proved to be NP-hard [20];

however, there are heuristic diversification approaches in product recommendation [140]

and web search [4]. We may use the index-based diverse browsing method presented

in [69].
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Chapter 4: Direction Awareness and Diversity for Citation

Recommendation

The academic community has published millions of research papers to date, and

the number of new papers has been increasing with time. For example, based on

DBLP24, computer scientists published 3 times more papers in 2010 than in 2000 (see

Figure 4.1-left). With more than one hundred thousand new papers each year, per-

forming a complete literature search became a herculean task. A paper cites 20 other

papers on average (see Figure 4.1-right for the distribution of citations in our data),

which means that there might be more than a thousand papers that cite or are cited

by the papers referenced in a research article. Researchers typically rely on manual

methods to discover new research such as keyword-based search via search engines,

reading proceedings of conferences, browsing publication list of known experts or

checking the reference list of the paper they are interested. These techniques are

time-consuming and only allow to reach a limited set of documents in a reasonable

time. Developing tools that help researchers to find unknown and relevant papers

will certainly increase the productivity of the scientific community.

Some of the existing approaches and tools for the literature search cannot com-

pete with the size of today’s literature. Keyword-based approaches suffer from the

24statistics based on data acquired from DBLP in Dec’11
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confusion induced by different names of identical concepts in different fields. (For

instance, partially ordered set or poset are also often called directed acyclic graph or

DAG). Conversely, two different concepts may have the same name in different fields

(for instance, hybrid is commonly used to specify software hybridization, hardware

hybridization, or algorithmic hybridization). These two problems may drastically

increase the number of suggested but unrelated papers.
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Figure 4.1: Number of new papers published each year based on DBLP (left), and
number of papers with given citation and reference count (right).

To alleviate the above mentioned problems, we built a web service called theadvisor25.

It takes a bibliography file containing a set of papers, i.e., seeds, as an input to initiate

the search. The user can specify that she is interested in classical papers or in recent

papers. Then, the service returns a set of suggested papers ordered with respect to

a ranking function. The service works using only the citation graph of known bibli-

ography. In other words, it does not take the textual data into account because our

25http://theadvisor.osu.edu/
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aim is finding all conceptually related and high quality documents even if they use a

different terminology. It has been shown that text-based similarity is not sufficient

for this task and that most of the relevant informations are contained within the ci-

tation graph [117]. Besides, it is plausible that there is already a correlation between

citation similarities and text similarities of the papers [113].

RefSeer26 is another webservice that shares our goals but uses a very different

approach. It aims at providing relevant references of an existing text by discovering

its main topics and suggests the most famous works within each topic of interest.

Therefore, it tends to suggest only very well-cited documents. We believe a citation

based approach will be more local and will provide the opportunity of finding papers

that are not popular but still highly relevant.

There are various citation-analysis-based paper recommendation methods depend-

ing on a pairwise similarity measure between two papers. Bibliographic coupling,

which is one of the earliest works, considers papers having similar citations as re-

lated [63]. Another early work, Cocitation, considers papers which are cited by the

same papers as related [116]. A similar cites/cited approach by using collaboration

filtering is proposed by McNee et al. [100]. CCIDF also considers only common cita-

tions, but by weighting them with respect to their inverse frequencies [82].

More recent works define different measures such as Katz which is proposed by

Liben-Nowell and Kleinberg for a study on the link prediction problem on social

networks [93] and used later for information retrieval purposes including citation

recommendation by Strohman et al. [117]. For two papers in the citation network,

the Katz measure counts the number of paths by favoring the shorter ones. Lu et al.

26http://refseer.ist.psu.edu/
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stated that both bibliographic coupling and Cocitation methods are only suitable for

special cases due to their very local nature [97]. They proposed a method which

computes the similarity of two papers by using a vector based representation of their

neighborhoods in the citation network. Liang et al. argued that most of the methods

stated above considers only direct references and citations alone [92]. Even Katz and

the vector based method of [97] consider the links in the citation network as simple

links. Instead, Liang et al. added a weight attribute to each link and proposed the

method Global Relation Strength which computes the similarity of two papers by

using a Katz-like approach.

Many works use random walk with restarts (RWR) for citation analysis [48, 81,

88, 98]. RWR is a well known and efficient technique used for different tasks including

computing the relevance of two vertices in a graph [104]. It is very similar to the well

known PageRank algorithm [15] which is used by both Li and Willett [88] (ArticleR-

ank) and Ma et al. [98] to evaluate the importance of the academic papers. Gori and

Pucci [48] proposed an algorithm, called PaperRank, for RWR-based paper recom-

mendation which can also be seen as a Personalized PageRank computation [60] on

the citation graph. Lao and Cohen [81] also used RWR for paper recommendation

in citation networks and proposed a learnable proximity measure for weighting the

edges by using machine learning techniques. As far as we know, none of these works

study the recent/traditional paper recommendation problem. The closest work is

Claper [132] which is an automatic system that measure how much a paper is classi-

cal, allowing to rank a list of paper to highlight the most classical ones.
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In Section 4.1, we evaluate the existing algorithms and present new algorithms

that power theadvisor. We introduce a class of parametric algorithms, said to be di-

rection aware, which allow to give more importance to either the citation of papers or

their references. They make the citation suggestion process easily tunable for finding

either recent or traditional relevant papers. In particular we extend two eigenvec-

tor based methods into direction-aware algorithms, namely DaRWR and DaKatz.

These algorithms are compared to state-of-the-art citation-based algorithms for bib-

liographic recommendation and their adequation to the problem is studied.

Next, we present different implementations and ordering techniques for reducing

the query processing time in Section 4.2. Finally, we enhance various result diver-

sification techniques with direction-awareness property for paper recommendation,

propose new algorithms based on vertex selection and query refinement, and compare

in Section 4.3.

4.1 Citation Recommendation and Direction Awareness

4.1.1 Problem definition and solutions

Let G = (V,E) be the citation graph, with n papers V = {v1, . . . , vn}. In G, each

directed edge e = (vi, vj) ∈ E represents a citation from vi to vj. We use the phrases

“references of v” and “citations to v” as to describe the graph around vertex v (see

Figure 4.2). We use deg−(v) and deg+(v) to denote the number of references of and

citations to v, respectively.

In this work, we target the problem of paper recommendation assuming that the

researcher has already collected a set of papers in the manuscript preparation [117].

Therefore, the objective is to return papers that the given manuscript might cite:
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Paper recommendation (PR): Given a set of m seed papers Q = {p1, . . . , pm} s.t.

Q ⊆ V , and a parameter k, return top-k papers which are relevant to the ones in Q.

Random walk with restart

RWR is widely used in many fields. In citation analysis, PaperRank [48] is

a method based on random walks in the citation graph G. However, the current

structure of G is not suitable for finding recent and relevant papers since such papers

have only a few incoming edges. Moreover, since the graph is acyclic, all random

walks will end up on old papers. To alleviate this, given a PR query with inputs Q

and k, PaperRank constructs a directed graph G′ = (V ′, E ′) by slightly modifying

the citation graph G as follows:

A source node s is added to the vertex set: V ′=V ∪{s}. Back-reference edges (Eb),

the edges from s to seed papers (Ef ), and restart edges from V to s (Er) are added

to the graph: Eb = {(y, x) : (x, y) ∈ E}, Ef = {(s, v) : v ∈ Q}, Er = {(v, s) : v ∈ V },

and E ′ = E ∪ Eb ∪ Ef ∪ Er.

p1 p2 p3 pm...

a b c d

restart edges

reference
edgesback-reference

(citation) edges

s

Figure 4.2: Citation graph with source node s and seed set Q = {p1, . . . , pm}. The
papers a and b are cited by p1, and c and d cites p1. Note that there is a corresponding
back-reference edge for each reference.
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The new directed graphG′ has reference (red), back reference (dashed), and restart

(gray) edges (see Figure 4.2). In this model, the random walks are directed towards

both references and citations of the papers. In addition, the restarts from the source

vertex s will be distributed to only the seed papers in Q. Hence, random jumps to

any paper in the literature are prevented. We assume that a random walk ends in

v continues with a neighbor with a damping factor d ∈ (0, 1]. And with probability

(1 − d), it restarts and goes to the source s. Let Rt−1(v) be the probability of a

random walk ends at vertex v 6= s at iteration t− 1. Let Ct(v) be the contribution of

v to one of its neighbors at iteration t. In each iteration, d of Rt−1(v) is distributed

among its references and citations equally. Hence,

Ct(v) = d
Rt−1(v)

deg+(v) + deg−(v)
. (4.1)

Initially, a probability score of 1 is given to the source node, meaning that a

researcher expands the bibliography starting with the paper itself: R0(s) = 1 and

R0(v) = 0 for all v ∈ V , where R0 is the probability at t = 0. PaperRank algorithm

computes the probability of a vertex u at iteration t as

Rt(u) =


(1− d)

∑
v∈V Rt−1(v), if u = s∑

(u,v)∈E Ct(v) + Rt−1(s)
|Q| , if u ∈ Q∑

(u,v)∈E Ct(v), otherwise.

(4.2)

PaperRank converges when the probability of the papers are stable. Let ∆t be

the difference vector. We say that the process is in a steady state when the L2 norm

of ∆t is smaller than a given value ε.

Direction-aware random walk with restart

A random walk with restart is a good way to find relevance scores of the papers.

However, the PaperRank algorithm treats the citations and references in the same
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way. This may not lead the researcher to recent and relevant papers if she is more

interested with those. Old and well cited papers have an advantage with respect to

the relevance scores since they usually have more edges in G′. Hence G′ tends to have

more and shorter paths from the seed papers to old papers. We define a direction-

awareness parameter κ ∈ [0, 1] to obtain more recent results in the top-k documents.

We then define two types of contributions of each paper v to a neighbor paper in

iteration t:

C+
t (v) = dκ

Rt−1(v)

deg+(v)
, (4.3)

C−t (v) = d(1− κ)
Rt−1(v)

deg−(v)
, (4.4)

where C−t (v) is the contribution of v to a paper in its reference list and C+
t (v) is the

contribution of v to a paper which cites v. Hence, for a non-seed, non-source paper

u,

Rt(u) =
∑

(v,u)∈Eb

C+
t (v) +

∑
(v,u)∈E

C−t (v). (4.5)

For a seed node u, Rt(u) is computed similarly except that each seed node has an

additional Rt−1(s)
|Q| in the equation. Rt(s) is computed in the same way as (4.2). With

this modification, the parameter κ can be used to give more importance either to

traditional papers with κ ∈ [0, 0.5] or recent papers with κ ∈ [0.5, 1]. We call this

algorithm direction-aware random walk with restart (DaRWR).

Note that DaRWR (4.12) has the probability leak problem when a paper has no

references or citations. If this is the case, some part of its score will be lost at each

iteration. For such papers, we distribute the whole score from the previous iteration

towards only its references or citations.
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Katz and direction awareness

The direction awareness can be also adapted to other similarity measures such as

the graph-based Katz distance measure [93] which was used before for the citation

recommendation purposes [117]. With Katz measure, the similarity score between

two papers u, v ∈ V is computed as

Katz(u, v) =
L∑
i=1

βi|pathsiu,v|, (4.6)

where β ∈ [0, 1] is the decay parameter, L is an integer parameter, and |pathsiu,v|

is the number of paths with length i between u and v in the graph with paper and

back-reference edges G′′ = (V,E ∪Eb). Notice that the path does not need to be ele-

mentary, i.e., the path uvuv is a valid path of length 3. Therefore the Katz measure

might not converge for all values of β when L = ∞. β needs to be chosen smaller

than the larger eigenvalue of the adjacency matrix of G′′. And in practice L is set to

a fixed value (in our experiment L = 10). In our context with multiple seed papers,

the relevance of a paper v is set to R(v) =
∑

u∈QKatz(u, v).

We extend the Katz distance by using direction awareness to weight the contri-

butions to references and citations differently with the κ parameter as in DaRWR:

DaKatz(u, v) =
L∑
i=1

[
κβi|Rpathsiu,v|+ (1− κ)βi|Cpathsiu,v|

]
,

where |Rpathsiu,v| (respectively, |Cpathsiu,v|) is the number of paths in which the last

edge in the path is a reference edge of E (respectively, a citation edge of Eb).
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4.1.2 Experiments

Dataset collection

The retrieval of bibliographic information and citation graph generation is a dif-

ficult task since academic papers are generally copyrighted and they are accessible

through publishers’ digital libraries. Therefore, we limited our study to data with

license that explicitly allow data mining.

We retrieved information on 1.9M computer science articles (as of March 2012)

from DBLP27 [86], 740K technical reports on physics, mathematics, and computer

science from arXiv28, and 40K publications from HAL-Inria29 open access library.

This data is well-formatted and disambiguated; however, it contains very few citation

information (less than 470K edges). CiteSeer30 is used to increase the number of

paper-to-paper relations of computer science publications, but most of its data are

automatically generated [44] and are often erroneous. We mapped each document in

CiteSeer to at most one document in each dataset with the title information (using an

inverted index on title words and Levenshtein distance) and publication years. Using

the disjoint sets, we merged the papers and their corresponding metadata from four

datasets. The papers without any references or incoming citations are discarded. The

final citation graph has about 1M papers and 6M references, and is currently being

used in our service.

27http://www.informatik.uni-trier.de/~ley/db/

28http://arxiv.org/

29http://hal.inria.fr/

30http://citeseerx.ist.psu.edu/
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Parameter tests

Before comparing the different methods presented in the paper, we study the

impact of the damping factor d and the direction-awareness parameter κ on the

papers recommended by the DaRWR algorithm. In particular, we want to verify

that changing these parameters allows the user to obtain suggestions that are either

closer to or farther away from the seed papers Q, and to obtain suggestions that are

either recent or more traditional. To verify these effects, a source paper published

between 2005 and 2010 is randomly selected and its references are used as the seed

papers. We use the top-10 results as the set of recommended papers R. The test is

repeated for 2500 distinct queries that satisfy the given constraints.

Figure 4.3 (top) shows the impacts of d and κ on the average year of R and

average shortest distance in the citation graph between R and Q. When d increases,

the probability that the random research jumps back to the source node s is reduced.

It allows reaching vertices distant from s to be reached more often. κ makes little

difference in the average distance to the seed papers. However, setting a higher value

of d should allow to find relevant papers whose relation to the seeds are not obvious.

Figure 4.17 (bottom) also shows that increasing d leads to earlier papers since

they tend to accumulate more citations. But for a given κ, varying the damping

factor do not allow to reach a large diversity of time frames. The direction-awareness

parameter κ can be adjusted to reach papers from different years with a range from

late 1980’s to 2010 for almost all values of d. In our online service, the parameter κ

can be set to a value of user’s preference. It allows the user to obtain recent papers

by setting κ close to 1 or finding older papers by setting κ close to 0.
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Figure 4.3: Average shortest distance from seed papers (left) and publication year
(right) of top-10 recommendations by DaRWR based on d and κ.

Overall, first-level papers are often returned for d < 0.8; yet many papers at dis-

tance 2 and more appear. Also, it is possible to choose between traditional papers (by

setting κ < 0.4) or recent papers (by setting κ > 0.8).

Experimental settings

We test the quality of the recommended citations by different methods in three

different scenarios.

The hide random scenario represents the typical use-case where a researcher

is writing a paper and trying to find some more references. To simulate that, a

source paper s with enough references (20 ≤ deg+(s) ≤ 100) is randomly selected

from the papers published between 2005 and 2010. Then we remove s and all the

papers published after s from the graph (i.e., Gs = (Vs, Es) where Vs ⊂ V \ {s}

and ∀v ∈ Vs, year[v] ≤ year[s]) to simulate the time when s was being written.

Out of deg+(s), 10% of the references are randomly put in the hidden set H, and

the rest is used as the seed papers (i.e., Q = {v /∈ H : (s, v) ∈ E}). We compute

the citation recommendations on Q and report the mean average precision (MAP)
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of finding hidden papers within the top-50 recommendations for 2500 independent

queries.

The hide recent scenario represents another typical use-case where the author

might be well aware of the literature of her field but might have missed some recent

developments. Here, the hidden set H only contains the most recent references.

Again, MAP of finding hidden papers within the top-50 recommendations is reported

for each query. Similarly, we define hide earlier where the hidden papers are the

oldest publications.

The methods we proposed are compared on the three scenarios against widely-used

citation based approaches: bibliographic coupling [63], Cocitation [116], CCIDF [82],

PaperRank [48] and the original Katz distance [93]. The algorithms and the pa-

rameters that lead to the best accuracy in different experiments are summarized in

Table 4.1.

Table 4.1: Parameters used in the experiments.

Method Random Recent Earlier
Katzβ β = 0.0005 β = 0.005

DaKatz
β=0.005 β = 0.0005 β = 0.005
κ = 0.25 κ = 0.75 κ = 0.05

PaperRank d = 0.75 d = 0.75 d = 0.9

DaRWR
d = 0.75 d = 0.75 d = 0.75
κ = 0.75 κ = 0.95 κ = 0.25

Results

Accuracy: Figure 4.4 presents a comparison of all the methods on there scenarios.

Many algorithms are represented as horizontal lines since they are not direction aware.
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Figure 4.4: Mean average precision of the algorithms on three experiments based on
κ and other parameters. Note that Katz is equal to DaKatz at κ = 0.5.

The first remark is that Cocoupling and CCIDF perform poorly on all four scenarios.

Cocitation performs the worst in the hide recent scenario and performs reasonably

good but not the best in the other scenarios. These methods only consider counting

and weighting distance-2 papers from the seeds, and they are outperformed by the

eigenvector-based methods which take whole graph into account.

Notice that PaperRank performs well overall but for different values of the

damping parameter d. The performance of DaKatz is significantly varying with the

parameter set, but it is important to notice that the variations with the direction-

awareness parameter are similar to the one observed on DaRWR. The results of

Katz are not explicitly presented but can be read on DaKatz when κ = 0.5. Notice

that DaKatz is always a better method that Katz. PaperRank achieves the best

results when the query is generic (on the hide random scenarios); however direction-

aware methods lead to higher accuracy when the query is targeted.
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Table 4.2: Results of the experiments with mean average precision and 95% confidence
intervals.

hide random hide recent hide earlier
mean interval mean interval mean interval

DaRWR 48.00 46.80 49.20 42.22 40.95 43.50 60.64 59.48 61.80
P.R. 56.56 55.31 57.80 38.75 37.50 40.00 58.93 57.76 60.10
DaKatz 52.39 51.18 53.60 35.18 33.96 36.40 63.93 62.76 65.10
Katzβ 46.33 45.16 47.50 34.56 33.42 35.70 44.19 42.97 45.40
Cocit 44.60 43.39 45.80 14.22 13.25 15.20 55.97 54.64 57.30
Cocoup 17.28 16.36 18.20 17.56 16.61 18.50 2.93 2.57 3.30
CCIDF 18.05 17.11 19.00 18.97 17.94 20.00 3.55 3.10 4.00

The accuracy being close to each other, we report in Table 4.2 the 95% confidence

interval for the best parameters of each method on the three scenarios. In each

scenario, the confidence interval of the method that performs best does not intersect

with any other interval. It indicates that their dominance is statistically significant.

Coverage: The previous experiments show a statistically significant but little differ-

ence in accuracy between the best method and the runner-up. We investigate whether

the recommended documents are similar or different. Table 4.3 presents the inter-

section matrix of the different methods on the three scenarios for a limited number

of queries. Each method’s parameters are set to optimize the accuracy. The diago-

nal of the matrix shows the actual accuracy of the methods. Other values show the

MAP of the intersection of the solutions of the two corresponding methods. DaKatz

clearly dominates Katz. Cocitation and CCIDF recommend different documents (up

to 8%). DaRWR and PaperRank can show significant differences (up to 5.6%) as

well. In each scenario, the best algorithm can not be improved more than 7% using

the solution of another algorithm.
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Table 4.3: Intersection matrix of the results for hide random (i), recent (ii), and
earlier (iii) experiments.

(i) DaRWR P.R. DaKatz Katzβ Cocit Cocoup CCIDF
DaRWR 44.76 41.54 40.54 34.13 31.96 11.95 12.61
P.R. 51.97 44.98 39.03 33.58 13.50 14.21
DaKatz 51.89 39.55 37.57 14.07 13.69
Katzβ 42.73 29.48 14.71 14.10
Cocit 43.25 10.46 8.95
Cocoup 16.37 11.64
CCIDF 16.98

(ii) DaRWR P.R. DaKatz Katzβ Cocit Cocoup CCIDF
DaRWR 40.14 32.15 30.86 30.25 10.02 14.78 17.05
P.R. 34.91 27.34 27.75 11.31 14.17 16.30
DaKatz 35.31 33.23 9.05 15.95 16.79
Katzβ 34.51 9.54 16.05 16.72
Cocit 13.50 5.92 5.58
Cocoup 17.39 13.43
CCIDF 19.22

(iii) DaRWR P.R. DaKatz Katzβ Cocit Cocoup CCIDF
DaRWR 60.87 52.39 56.56 40.10 47.31 2.17 2.306
P.R. 57.99 53.98 40.53 48.69 2.65 2.75
DaKatz 63.84 41.34 50.81 2.45 2.63
Katzβ 42.09 38.27 2.80 2.78
Cocit 54.97 2.43 2.16
Cocoup 2.91 2.04
CCIDF 3.19

Citation patterns: The large variation of the accuracy when the direction-awareness

parameter varies indicates that searching for old papers is inherently different than

searching for recent papers or arbitrary papers. We believe that traditional papers

and recent papers cite and are being cited differently. To qualify this difference,

we study the properties of the suggestions returned by the methods and compare

them to the properties of the actual references within the papers. We argue that an

appropriate method should suggest papers having patterns resembling the properties
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Figure 4.5: Clustering coefficient of the suggested citations for the experiments.

of the papers it is designed to find. The clustering coefficient [133] Cv of a paper v

can be used to qualify the citation patterns. It is computed as:

Cv =
|{(i, j) ∈ E | i, j ∈ Nv ∪ {v}}|

|Nv| × (|Nv|+ 1)
,

where Nv is the set of neighbor papers of v which either cite v or are cited by v.

Intuitively, clustering coefficient indicates how close of being a clique a vertex and its

neighbors are.

Figure 4.5 presents the cumulative density function of the clustering coefficients

of the documents suggested by each algorithm and of the hidden papers in three

scenarios. First of all, the trace of the hidden papers is different in the three scenarios.

When the hidden papers are early papers, they are typically well cited and their

clustering coefficients are low. (It is unlikely that a large neighborhood forms a clique

since the outgoing degree is typically small.) Recent papers have a higher clustering

coefficient and their neighborhoods are small. This confirms that clustering coefficient

can be used to distinguish old and recent papers.
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None of the methods matches the trace of the hidden paper in the hide random

scenario. PaperRank matches its trace at the beginning of the curve, while DaRWR

and DaKatz match it at the end. In the hide recent scenario, most algorithms have

a trace similar to the one of the hidden papers beside PaperRank and Cocitation.

Notice that CCIDF and Cocoupling exhibit a trace similar to the hidden papers

despite suffering from a low accuracy: they find recent papers but not the relevant

ones. In hide earlier scenario, DaRWR, DaKatz and Cocitation have patterns

similar to hidden papers. The rest of the algorithms have patterns different from

the hidden papers. In all cases, CCIDF has citation patterns similar to the one of

Cocoupling.

This analysis shows that direction-aware algorithms can be tuned to reach a variety

of citation patterns, allowing them to match the patterns of recent or old documents.

However, having a similar trace is an important property but it is not enough to reach

a high precision.

4.2 Service and Fast Recommendation

Sparse-matrix computations working exclusively on nonzero entries are usually not

suitable for today’s cache architectures if an ordinary ordering of the rows, columns,

or nonzeros is used. The difficulty arises from the fact that the memory access pattern

in such computations depends on the nonzero distribution in the matrix which usually

does not have a well-defined regular structure. If the access pattern is random, the

number of cache misses through the computation increases. Since there will be a

penalty for each cache miss, reordering the nonzero accesses in the matrix is a good

idea to reduce the number of cache misses and hence, the execution time.
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One of the most widely used operation in network analysis is sparse matrix-dense

vector multiplication (SpMxV). This operation is assumed to be the computational

bottleneck for network analyses based a on random walk with restart (RWR) which

is used in PageRank [103], impact factor computations [14], recommendation sys-

tems [65, 139] and finding/predicting genetic interactions [28]. The SpMxV kernel

is also the core of other graph based metrics such as Katz which is proposed by

Liben-Nowell and Kleinberg for a study on the link prediction problem on social

networks [93] and used later for information retrieval purposes including citation rec-

ommendation by Strohman et al. [117].

In this work, we target a citation, venue, and expert recommendation problem in

our publicly available web-service called theadvisor. The service takes a bibliography

file in various formats (bib, ris, xml) that contains a set of query papers to initiate the

recommendation process. Then, it returns a set of papers ordered with respect to a

ranking function. The user can guide the search or prune the list of suggested papers

with positive or negative feedbacks by declaring some papers relevant or irrelevant.

In this case, the service completely refines the set and shows the new results back to

the user. In addition to papers, theadvisor also suggests researchers or experts, and

conferences or journals of interest. The service is designed to help researchers while

performing several tasks, such as:

• literature search,

• improving the reference list of a manuscript being written,

• finding conferences and journals to attend, get subscribed, or submit papers,

• finding a set of researchers in a field of interest to follow their work,
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• finding a list of potential reviewers, which is required by certain journals in the

submission process.

The algorithm we employed in theadvisor is based on RWR and is implemented

by using the SpMxV operation. There exist several methods in the literature proposed

to improve the cache locality for the SpMxV operations by ordering the rows and/or

columns of the matrix by using graph/hypergraph partitioning [5, 126, 136, 142, 143]

and other techniques [3, 108, 110, 120]. The recommendation algorithm used in

theadvisor is direction aware. That is, the user can specify that she is interested in

classical papers or recent papers. This property brings a unique characteristic to the

SpMxV operation used in the service which makes existing hypergraph partitioning

based techniques [5, 142, 143] not directly applicable. We recently experimented on a

direction-aware Katz-based algorithm and showed that it outperforms one without di-

rection awareness when the objective is to find either traditional or recent papers [72].

In this work, our contribution is two-fold: First, we propose techniques to effi-

ciently store the matrix used by direction-aware algorithms. We then propose effi-

cient implementations of the algorithm and investigate several matrix ordering tech-

niques based on a hypergraph partitioning model and ordering heuristics, such as

the Approximate Minimum Degree (AMD) [6], Reverse Cuthill-McKee (RCM) [31],

and SlashBurn [62]. State-of-the-art hypergraph partitioners are typically too slow

to be used to optimize just a couple of SpMxV operations. However, considering

theadvisor’s purpose, the algorithm will be executed many times whereas the or-

dering is required only once. The current version of our service is already using the

implementation and ordering described here.
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We give a thorough evaluation of the proposed approach and algorithms, and

measure the efficiency of the implementation and matrix storing/ordering techniques

used in theadvisor. The combination of all the techniques improved the response

time of our service by 67% (3x). We believe that the techniques proposed here can

also be useful for SpMxV-related sparse-matrix problems in social network analysis.

A preliminary version of this work was published in [70]. We extend in this work

the discussion to a wider class of algorithms and exemplify the discussion by using

Katz-based metrics. We also investigate the SlashBurn ordering. We discuss the

impact of the convergence of the method on the choice of representation and ordering

of the matrix.

4.2.1 Background

Citation Analysis: Random Walk with Restart and Katz

Citation analysis-based paper recommendation has been a popular problem since

the 60’s. There are methods that only take local neighbors (i.e., citations and refer-

ences) into account, e.g., bibliographic coupling [63], cocitation [116], and CCIDF [82].

Recent studies, however, employ graph-based algorithms, such as Katz [93], random

walk with restart [104], or well-known PageRank algorithm to investigate the whole

citation network. PaperRank [48], ArticleRank [88], and Katz distance-based meth-

ods [93] are typical examples.

We target the problem of paper recommendation assuming that the researcher has

already collected a list of papers of interest. Let G = (V,E) be the directed citation

graph with a vertex set V = {1, 2, . . . , n} and an edge set E, which contains (i, j) if

paper i cites paper j. We define the problem as follows: Given a set of query papers

Q ⊆ V , and a parameter k, return top-k papers which are relevant to the ones in Q.
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Let E ′ be the undirected version of E, i.e.,

E ′ = {{i, j} : (i, j) ∈ E}.

Let G′ = (V,E ′) be the undirected citation graph and δ(i) denote the degree of a

vertex i ∈ V in G′. Random walk with restart is a widely used method in many

fields. In citation analysis, RWR directs the random walks towards both references

and citations of the papers. In addition, the restarts are directed only to the query

papers in Q. Hence, random jumps to any paper in the literature are prevented.

Starting from the query papers, we assume that a random walk ends in paper i

continues with a neighbor with a damping factor d ∈ (0, 1]. And with probability

(1 − d), it restarts and goes back to the query papers. Let pt(i) be the probability

that a random walk ends at vertex i ∈ V at iteration t. Hence, p0(i) = 1
|Q| for a

query paper i, and 0 for other papers. Let ct(i) be the contribution of i to one of

its neighbors at iteration t. In each iteration, d of pt−1(i) is distributed among i’s

references and citations equally, hence, ct(i) = dpt−1(i)
δ(i)

.

The Katz distance [93] is another measure which has been used for citation rec-

ommendation purposes [117]. The Katz distance between two papers i, j ∈ V is

computed as:

Katz(i, j) =
∞∑
`=1

β`|paths`i,j|, (4.7)

where β ∈ [0, 1] is the decay parameter, and |paths`i,j| is the number of paths of length

` between i and j in the undirected citation graph G′. Such a path does not need to

be elementary, i.e., the path i, j, i, j is a valid path of length 3. Therefore, the Katz

measure might not converge for all values of β; it needs to be chosen smaller than
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the reciprocal of the largest eigenvalue of the adjacency matrix of G′31. In citation

recommendation with multiple query papers, the relevance of a paper j is computed

as π(j) =
∑

i∈QKatz(i, j).

Modeling sparse matrices with hypergraphs

A hypergraph H = (V ,N ) is defined as a set of vertices V and a set of nets

(hyperedges) N . A net η ∈ N is a subset of vertex set V , and the vertices in η are

called its pins. The size of a net is the number of its pins, and the degree of a vertex is

equal to the number of nets that contain it. Figure 4.6.(a) shows a simple hypergraph

with five vertices and five nets. A graph is a special instance of hypergraph such that

each net has size two. Vertices can be associated with weights, denoted with w[·], and

nets can be associated with costs, denoted with c[·].

A K-way partition of a hypergraph H is denoted as Π = {V1,V2, . . . ,VK} where

parts are pairwise disjoint, each part Vk is a nonempty subset of V , and union of the

K parts is equal to V .

In a partition Π, a net that has at least one pin (vertex) in a part is said to connect

that part. The number of parts connected by a net η, i.e., connectivity , is denoted

as λη. A net η is said to be uncut (internal) if it connects exactly one part, and cut

(external), otherwise (i.e., λη > 1). In Figure 4.6.(a) the toy hypergraph with four

internal nets and an external net is partitioned into two .

Let Wk denote the total vertex weight in Vk and Wavg denote the weight of each

part when the total vertex weight is equally distributed. If each part Vk ∈ Π satisfies

31The Katz centrality of a node i can be computed as Katz(i) =
∑n
j=1Katz(i, j) =∑n

j=1

∑∞
`=1 β

`(A`)ji where A is the 0–1 adjacency matrix of the citation graph. When β is
smaller than the reciprocal of the largest eigenvalue, the Katz centralities can be computed as(
(I − βAT )−1 − I

) →
I where I is the identity matrix and

→
I is the identity vector.
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(a) A toy hypergraph (b) Corresponding matrix

Figure 4.6: A toy hypergraph with five vertices and five nets partitioned into two
parts (a). Net n4 is a cut net since it is connected to two parts, hence, λ4 = 2. The
rest of the nets are internal. The corresponding matrix (w.r.t. column-net model)
whose nonzero entries are colored and zeros are shown with white (b).

the balance criterion

Wk ≤ Wavg(1 + ε), for k = 1, 2, . . . , K (4.8)

we say that Π is balanced where ε represents the maximum allowed imbalance ratio.

The set of external nets of a partition Π is denoted as NE. Let χ(Π) denote the

cost, i.e., cutsize, of a partition Π. There are various cutsize definitions [84]. In this

work, we use

χconn(Π) =
∑
η∈N

c[η](λη − 1) . (4.9)

as also used by Akbudak et al. for similar purposes [5]. The cutsize metric given

in (4.9) will be referred to as the connectivity-1 metric. Given ε and an integer

K > 1, the hypergraph partitioning problem can be defined as the task of finding

a balanced partition Π with K parts such that χ(Π) is minimized. The hypergraph
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partitioning problem is NP-hard [84] with the above objective function. We used a

state-of-the-art partitioning tool PaToH [22].

There are three well-known hypergraph models for sparse matrices. These are

the column-net [21], row-net [21], and fine-grain models [23]. Here, we describe the

column-net model we used for a sparse matrix A of size n×n with m nonzeros. In the

column-net model, A is represented as a unit-cost hypergraph HR = (VR,NC) with

|VR|=n vertices, |NC |=n nets, and m pins. In HR, there exists one vertex vi ∈ VR

for each row i. Weight w[vi] of a vertex vi is equal to the number of nonzeros in

row i. There exists one unit-cost net ηj ∈ NC for each column j. Net ηj connects the

vertices corresponding to the rows that have a nonzero in column j. That is, vi∈ηj

if and only if aij 6=0 (see Figure 4.6). The row-net model is the column-net model of

the transpose of A.

Matrix ordering techniques for improving cache locality in SpMxV

The SpMxV operation is defined as y ← Ax where A is an n × n sparse matrix

with m nonzeros, x is the n× 1 input vector, and y is the n× 1 output vector. Let

P and Q be two n × n permutation matrices. That is, P and Q have only a 1 in

each of their rows and columns and the rest is 0. When the matrix A is ordered as

A′ = PAQ, the SpMxV operation can be written as y′ ← A′x′ where y′ = Py and

x′ = QTx. Some existing cache-locality optimization techniques use this fact and

permute the rows and columns of A to improve cache locality.

To find good P and Q, several approaches are proposed in the literature: Band-

width reduction is proven to be promising for decreasing cache misses [120]. For this

reason, the reverse Cuthill-McKee heuristic [31] has been frequently used as a tool

and a benchmark by several researchers [109, 110, 126]. RCM has also been frequently
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used as a fill-in minimization heuristic for sparse LU factorization. Another success-

ful fill-in minimization heuristic, the approximate minimum degree (AMD) [6], is also

used for improving cache locality [109]. Another ordering heuristic SlashBurn has

recently been proposed for graph compression and mining [62].

Graph and hypergraph partitioning models and techniques have been extensively

studied for reducing cache misses [5, 126, 136, 142, 143]. Among those, the most

similar ones to our work are [142, 143] and [5], which use hypergraph partitioning as

the main tool to reduce the number of cache misses.

As should be evident, the sparse matrix storage format and the cache locality are

related since the storage determines the order in which the nonzeros are processed.

In this work, we use two of the most common formats. The coordinate format (COO)

keeps an array of m triplets of the form 〈aij, i, j〉 for a sparse matrix A with m entries.

Each triplet contains a nonzero entry aij and its row and column indices (i, j). The

COO format is suitable for generating arbitrary orderings of the non-zero entries.

The compressed row storage format (CRS) uses three arrays to store a n× n sparse

matrix A with m nonzeros. One array of size m keeps the values of nonzeros where

the nonzeros in a row are stored consecutively. Another array parallel to the first one

keeps the column index of each nonzero. The third array keeps the starting index of

the nonzeros at a given row where the ending index of the nonzeros at a row is one

less than the starting index of the next row. A matrix represented in CRS is typically

30% smaller than the COO since the m entries representing i in COO are compressed

in an array of size n in CRS.
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Table 4.4: Statistics for the citation graph G.

|V | |E| avg δ max δ+ max δ−

982,067 5,964,494 6.07 617 5418

4.2.2 Direction-aware methods for citation recommendation

As described previously, our recommendation service, theadvisor, is designed to

solve the following problem: Given the directed citation graph G = (V,E), a set of

query papers Q ⊆ V , and a parameter k, return top-k papers which are relevant to

the ones in Q. We defined a direction awareness parameter κ ∈ [0, 1] to obtain more

recent or traditional results in the top-k documents [72]. Let δ+(i) and δ−(j) be the

number of references of and citations to paper u, respectively. The citation graph

we use in theadvisor has been obtained by cross-referencing the data of four online

database: DBLP, CiteSeer, HAL-Inria and arXiv. The properties of the citation

graph are given in Table 4.4.

In this work, we discuss efficient ways to compute the result set using two direction-

aware algorithms. The first one is based on the direction-aware random walk with

restart (DaRWR) and the second one is based on the direction-aware Katz simi-

larity (DaKatz). The following sections present both methods by addressing their

similarities and differences when they are implemented with SpMxV operations.

Direction-aware Random Walk with Restart (DaRWR)

Given G = (V,E), k, Q, d, and the direction awareness parameter κ, our al-

gorithm computes the steady-state probability vector p. For an iterative DaRWR

116



implementation, at iteration t, the two types of contributions of paper i to a neighbor

paper are defined as:

c+
t (i) = pt−1(i)

d(1− κ)

δ+(i)
, (4.10)

c−t (i) = pt−1(i)
dκ

δ−(i)
, (4.11)

where c+
t (i) is the contribution of paper i to a paper in its reference list and c−t (i)

is the contribution of paper i to a paper which cites i. The rank of paper i after

iteration t is computed with,

pt(i) = r(i) +
∑

(i,j)∈E

c−t (j) +
∑

(j,i)∈E

c+
t (j), (4.12)

where r is the restart probability vector due to jump backs to the papers in Q,

computed with,

r(i) =

{
1−d
|Q| , if i ∈ Q
0, otherwise.

(4.13)

Hence, each iteration of the algorithm can be defined with the following linear equa-

tion:

pt = r + Apt−1, (4.14)

where r is an n × 1 restart probability vector calculated with (4.13), and A is a

structurally-symmetric n× n matrix of edge weights, such that

aij =


d(1−κ)
δ+(i)

, if (i, j) ∈ E
dκ
δ−(i)

, if (j, i) ∈ E
0, otherwise.

(4.15)

The algorithm converges when the probability of the papers are stable, i.e., when

the process is in a steady state. Let ∆t = (pt(1)−pt−1(1), . . . ,pt(n)−pt−1(n)) be the

difference vector. We say that the process is in the steady state when the L2 norm
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of ∆t is smaller than a given value ξ. That is,

‖∆t‖2 =

√∑
i∈V

(pt(i)− pt−1(i))2 < ξ. (4.16)

Direction-aware Katz (DaKatz)

The direction awareness can be also adapted to other similarity measures such

as the graph-based Katz distance measure [93]. We extend the measure to weight

the contributions to references and citations differently with the κ parameter as in

DaRWR. Given G = (V,E), Q, κ, and an integer parameter L, the relevance score

of paper j is computed as:

p(j) =
∑
i∈Q

dL(i, j), (4.17)

where dL(i, j) is the direction aware Katz distance between a query paper i and paper

j with the paths of length up to L, computed recursively as:

dL(i, j) = βκ
∑

(k,j)∈E

dL−1(i, k) + β(1− κ)
∑

(j,k)∈E

dL−1(i, k), (4.18)

with the stopping case d0(i, i) = 1 if i ∈ Q, and 0 otherwise.

The structure of the DaKatz computation is very similar to the one of DaRWR,

therefore, it can be efficiently implemented with SpMxV operations as follows: The

scores are decayed and passed to the references and citations, rather than distributed

among them, hence:

aij =


β(1− κ), if (i, j) ∈ E
βκ, if (j, i) ∈ E
0, otherwise,

(4.19)

is used to build the structurally symmetric n × n transition matrix A. There is no

jumps to the query vertices; therefore, the linear equation in (4.30) is simplified to:

pt = Apt−1, (4.20)
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where the Katz distance is initialized with p0(i) = 1 if i ∈ Q, and 0 otherwise. The

final relevance score p(i) of a vertex i aggregates all Katz distances with each path

length up to L, i.e.,

p(i) =
L∑
t=1

pt(i). (4.21)

Even though the relevance scores p(i) monotonically increase with each iteration,

the algorithm still converges because of the decay parameter β.

Implementations with Standard CRS (CRS-Full)

Assume that A is stored in CRS format and let Ai∗ be the ith row of A. Al-

gorithms 6 and 7 show the pseudocodes of DaRWR and DaKatz where (4.30) or

(4.20) is computed at each iteration, respectively. Colored lines are used in order to

distinguish the differences between the two computations.

Algorithm 6: DaRWR with CRS-Full

Input: n× n transition matrix A in CRS
format, query paper set Q

Output: relevance vector p
pt ← 0
∀i ∈ Q, pt(i)← 1/|Q|
e← ‖pt‖2
while e > ξ do

pt−1 ← pt
pt ← 0
foreach paper i = 1 to n do

if pt−1(i) > 0 then
foreach aij 6= 0 in Ai∗ do

pt(j)← pt(j) + aijpt−1(i)

∀i ∈ Q, pt(i)← pt(i) + (1− d)/|Q|
e← ‖pt − pt−1‖2

return p← pt

Algorithm 7: DaKatz with CRS-Full

Input: n× n transition matrix A in CRS
format, query paper set Q

Output: relevance vector p
pt ← 0 ptotal ← 0
∀i ∈ Q, pt(i)← 1
e← ‖pt‖2
while e > ξ do

pt−1 ← pt
pt ← 0
foreach paper i = 1 to n do

if pt−1(i) > 0 then
foreach aij 6= 0 in Ai∗ do

pt(j)← pt(j) + aijpt−1(i)

ptotal ← ptotal + pt
e← ‖pt − pt−1‖2

return p← ptotal

To compute (4.30) or (4.20), one needs to read all of A at each iteration. Note

that for each nonzero in A, there is a possible update on pt. As described above, A
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contains 2|E| nonzeros which is approximately equal to 12× 106. This size allows us

to index rows and columns using 32-bit values. However, the probabilities and matrix

entries are stored in 64-bit. Assuming it is stored in CRS format, the size of A in

memory is roughly 147MB.

Implementations with Halved CRS (CRS-Half)

Here, we propose two modifications to reduce A’s size and the number of multi-

plications required to update pt. The first modification is compressing the nonzeros

in A: we know that during an iteration, the contributions of paper i to the papers in

its reference list are all equal to c−t (i). Similarly, the contributions of i to the papers

which cite i are equal to c+
t (i). Let sR and sC be the row and column scaling vectors

defined for DaRWR and DaKatz as:

(DaRWR) (DaKatz)

sR(i) =

{
d(1−κ)
δ+(i)

if δ+(i) > 0

0 otherwise.
sR(i) =

{
β(1− κ) if δ+(i) > 0

0 otherwise.
(4.22)

sC(i) =

{
dκ
δ−(i)

if δ−(i) > 0

0 otherwise.
sC(i) =

{
βκ if δ−(i) > 0

0 otherwise.
(4.23)

Let B be the 0-1 adjacency matrix of G defined as

bij =

{
1, if (i, j) ∈ E
0, otherwise.

(4.24)

Then (4.30) and (4.20) can be rewritten as

pt = r + B(sR ∗ pt−1) + BT (sC ∗ pt−1), (4.25)

where ∗ denote the pointwise vector multiplication. In this form, the total size of

B, BT , sR, and sC is roughly 71MB assuming we only store the indices of nonzeros

in B and BT . This modification not only reduces the size of A, but also decreases
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the number of multiplications required in each iteration. Here, we only need to do

pointwise multiplications sR∗pt−1 and sC ∗pt−1 before traversing the nonzero indices.

Hence, we only need to do 2|V | multiplications per iteration. Assuming pt(i) > 0 for

all i ∈ V , Algorithms 6 and 7 perform 2|E| multiplications. Hence this modification

can lead up to 6 fold reduction on the number of multiplications on our dataset.

We can further reduce the memory usage by using the fact that bij = 1 if and

only if bTji = 1. We can only store B, and when we read a nonzero bij, we can do the

updates on pt both for bij and bTji. By not storing BT , we reduce the size roughly to

43MB. Furthermore, we actually read two nonzeros when we bring bij from the mem-

ory. However, we still need to do two different updates. A similar optimization has

been proposed for some particular SpMxV operations [16]. Algorithms 8 and 9 show

the pseudocodes of the DaRWR and DaKatz computation with the modifications

described above.

Although the proposed modifications reduce the size of A and the number of

multiplications, there is a drawback. In Algorithms 6 and 7, line 8 first checks if

pt−1(i) > 0. If this is not the case there is no need to traverse any of the aijs. This

shortcut is especially useful when pt−1 contains only a few positive values which is

the case for the first few iterations. However, such a shortcut only works for nonzeros

corresponding to the outgoing edges when the matrix is reduced. That is, if bij is

nonzero, Algorithm 8 does the update pt(j)← pt(j) + spC(i) even though spC(i) is

zero. Hence, some updates with no effects are done in Algorithms 8 and 9, although

they are skipped in Algorithms 6 and 7.
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Algorithm 8: DaRWR with CRS-Half

Input: n× n adjacency matrix B in CRS
format, query paper set Q, row and
column scaling vectors sR, sC

Output: relevance vector p
pt ← 0
∀i ∈ Q, pt(i)← 1/|Q|
e← ‖pt‖2
while e > ξ do

spR ← pt ∗ sR
spC ← pt ∗ sC
pt−1 ← pt
pt ← 0
foreach paper i = 1 to n do

if spC(i) > 0 then
foreach bij 6= 0 in Bi∗ do

pt(i)← pt(i) + spR(j)
pt(j)← pt(j) + spC(i)

else
foreach bij 6= 0 in Bi∗ do

pt(i)← pt(i) + spR(j)

∀i ∈ Q, pt(i)← pt(i) + (1− d)/|Q|
e← ‖pt − pt−1‖2

return p← pt

Algorithm 9: DaKatz with CRS-Half

Input: n× n adjacency matrix B in CRS
format, query paper set Q, row and
column scaling vectors sR, sC

Output: relevance vector p
pt ← 0 ptotal ← 0
∀i ∈ Q, pt(i)← 1
e← ‖pt‖2
while e > ξ do

spR ← pt ∗ sR
spC ← pt ∗ sC
pt−1 ← pt
pt ← 0
foreach paper i = 1 to n do

if spC(i) > 0 then
foreach bij 6= 0 in Bi∗ do

pt(i)← pt(i) + spR(j)
pt(j)← pt(j) + spC(i)

else
foreach bij 6= 0 in Bi∗ do

pt(i)← pt(i) + spR(j)

ptotal ← ptotal + pt
e← ‖pt − pt−1‖2

return p← ptotal

Implementations with Halved COO Storage (COO-Half)

If we apply the optimizations described for the halved CRS, one needs roughly

63MB in memory to store B in COO format. In this format, the nonzeros are read

one by one. Hence, a shortcut for the updates with no effect is not practical. On

the other hand, with COO, we have more flexibility for nonzero ordering, since we

do not need to store the nonzeros in a row consecutively. Furthermore, techniques

like blocking can be implemented with much less overhead. We give the COO-based

pseudocodes of DaRWR and DaKatz in Algorithms 10 and 11.
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Algorithm 10: DaRWR with COO-Half

Input: n× n adjacency matrix B in COO
format, query paper set Q, row and
column scaling vectors sR, sC

Output: relevance vector p
pt ← 0
∀i ∈ Q, pt(i)← 1/|Q|
e← ‖pt‖2
while e > ξ do

spR ← pt ∗ sR
spC ← pt ∗ sC
pt−1 ← pt
pt ← 0
foreach nonzero bij of B do

pt(i)← pt(i) + spR(j)
pt(j)← pt(j) + spC(i)

∀i ∈ Q, pt(i)← pt(i) + (1− d)/|Q|
e← ‖pt − pt−1‖2

return p← pt

Algorithm 11: DaKatz with COO-Half

Input: n× n adjacency matrix B in COO
format, query paper set Q, row and
column scaling vectors sR, sC

Output: relevance vector p
pt ← 0 ptotal ← 0
∀i ∈ Q, pt(i)← 1
e← ‖pt‖2
while e > ξ do

spR ← pt ∗ sR
spC ← pt ∗ sC
pt−1 ← pt
pt ← 0
foreach nonzero bij of B do

pt(i)← pt(i) + spR(j)
pt(j)← pt(j) + spC(i)

ptotal ← ptotal + pt
e← ‖pt − pt−1‖2

return p← ptotal

4.2.3 Exploiting cache locality in reduced matrix operations

As explained in the previous section, one of the techniques we use for compressing

the matrix is to store B, but not BT . After this modification, when a nonzero bij

is read, pt(i) and pt(j) are updated accordingly. Hence, when we order B’s rows

with a permutation matrix P, we need to use the same P to order the columns if we

want to find the nonzero indices in BT . Also, using the same permutation allow a

simpler implementation of the iterative SpMxV operations. Note that although sR

and sC can be permuted with different row and column permutations, we only have

a single pt array to process both bij and its transposed counterpart bji as shown in

Figure 4.7. Due to these reasons, permuting the adjacency matrix as B′ = PBPT is

good practice for our problem. Note that the original SpMxV problem does not have

such a restriction. Hence, existing hypergraph-partitioning-based approaches cannot
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Figure 4.7: Two memory-access scenarios with different row/column permutations
and nonzero orderings while processing bij and bi′j′ consecutively. The left scenario
has a poor cache locality, since the locations accessed in sR, sC , and pt are far from
each other. On the other hand, in the right scenario, the locations are close to each
other. Thus, with high probability, the required values to process bi′j′ will already be
in the cache after processing bij.

be directly applied for our problem [5, 142, 143]. Note that we can still use symmetric

permutations such as the ones obtained by RCM, AMD, and SlashBurn.

Similar to existing partitioning-based approaches, we use a two-phase permuta-

tion strategy which first partitions the rows of B into K parts and sorts them in the

increasing order of their part numbers. The intra-part row ordering is decided later

by using RCM, AMD, or SlashBurn, and the final permutation matrix P is obtained.

Our column-net hypergraph HR = (VR,NC) is created with n vertices and n nets cor-

responding to the rows and columns of B, respectively, as described in Section 4.2.1.

In HR, two vertices vi and vi′ are connected via a net ηj if both bij and bi′j is equal

to 1. To handle the above mentioned restriction of using the same permutation for

rows and columns, we set vi ∈ ηi for all i ∈ {1, . . . , n}. That is, we set all diagonal

entries of B, which originally has a zero diagonal, to 1 and partition it. With this

modification, a net j can be internal if and only if the pins of j are in the same part
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with vertex j. Hence, when we permute the rows and columns with respect to the

part numbers of the rows, the columns corresponding to the internal nets of a part

will be accessed by the rows only in that part.

Since we store the matrix in CRS format, we know that spC is accessed sequen-

tially (even for COO-Half, our nonzero ordering respects to row indices to some

degree). Hence, accessing to pt and spR with column indices will possibly be the

main bottleneck. We use PaToH [22] to minimize connectivity − 1 metric (4.9) and

improve cache locality. Throughout the computation, the entry spR(j) will be put

to cache at least once assuming the jth column has at least one nonzero in it. If

column j is internal to part ` then spR(j) will be only accessed by the rows within

part ` (e.g., nets n1, n2, n3, and n4, and the corresponding columns in Figure 4.6).

Since the internal columns of each part are packed close in the permutation, when

spR(j) is put to the cache, the other entries of spR which are part of the same cache

line are likely to be internal columns of the same part. On the other hand, when an

external column j is accessed by a part `′ which is not the part of j, the cache line

containing spR(j) is unlikely to contain entries used by the rows in part `′ (n4 and

the fourth column in Figure 4.6). Minimizing the connectivity − 1 metric equals to

minimizing the number of such accesses. Note that the same is true for the access of

pt with column indices.

We find intra-part row/column orderings by using RCM, AMD, and SlashBurn

where RCM and AMD have previously been used for fill-in minimization in sparse LU

factorization. RCM is used to find a permutation σ which reduces the bandwidth of a

symmetric matrix A where the bandwidth is defined as b = max({|σ(i)−σ(j)| : aij 6=

0}). When the bandwidth is small, the entries are close to the diagonal, and the cache
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locality will be high. The AMD heuristic also has the same motivation of minimizing

the number of fill-ins, which usually densifies the nonzeros in different parts of the

matrix. Since having nonzeros close to each other is good for cache locality, we used

these heuristics to order rows and columns inside each part.

The last ordering heuristic, SlashBurn, has been proposed for matrix compression,

i.e., to reduce the number of fixed-size tiles required to cover all the nonzeros in the

matrix, which also implies a reduced number cache-misses. For several social and web

graphs, SlashBurn is proven to be very effective [62]. However, its complexity is larger

than that of RCM and AMD, and as a result, it is much slower in practice. Since the

ordering will be executed only once as a preprocessing phase of the theadvisor, for

our application, we can ignore its complexity in the evaluation and concentrate on its

benefits on the query response time.

For all the algorithms described in Section 4.2.2, we used the proposed ordering

approach. For CRS-Full, we permuted A, and for CRS-Half and COO-Half, we per-

muted B as described above. For COO-Half, we also apply blocking after permuting

B: we divide B into square blocks of size 1024× 1024 and traverse the nonzeros with

respect to their block ids (and row-wise within a block). The block size is tuned on

the architecture theadvisor is running on.

4.2.4 Experimental Results

The setup for the experiments can be summarized as follows:

Architectures: We used three different architectures to test the algorithms.

The target architecture (Arch1) has a 2.4GHz AMD Opteron CPU and 4GB of main

memory. The CPU has 64KB L1 and 1MB L2 caches. Our service, theadvisor,
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is currently running on a cluster with 50 nodes each having the above mentioned

architecture. For each query, the service opens a socket to a running process, submits

the query, and returns the results to the user. For completeness, we also test the

algorithms on two more recent architectures. The second architecture (Arch2) has a

2.4GHz quad-core AMD Opteron (Shanghai) CPU and 32GB of main memory. Each

core has 64KB L1 and 512KB L2 cache and each socket has a 6MB L3 cache. The

third architecture (Arch3) has a 2.27GHz quad-core Intel Xeon (Bloomfield) CPU

and 48GB of main memory. Each core has 32KB L1 and 256KB L2 caches and each

socket has an 8MB L3 cache.

Implementation: All of the algorithms are implemented in C++. The compiler

gcc and the -O2 optimization flag is used. For the experiments, we use only one core

from each processor.

Queries: We generated 286 queries where each query is a set Q of paper ids

obtained from the bibliography files submitted by the users of the service who agreed

to donating their queries for research purposes. The number of query papers, |Q|,

vary between 1 and 449, with an average of 24.7.

Parameters: For DaRWR, we use d = 0.8 and κ = 0.75 which are the de-

fault values in theadvisor. For DaKatz, we use β = 0.005. While generating the

partitions, we set the imbalance ratio of PaToH to 0.4.

Convergence: We did not use a threshold ξ for convergence. We observed that

DaRWR in our citation graph takes about 20, and DaKatz takes about 10 iterations

to converge (see Fig. 4.8). Computing the error between iterations takes some time,

and since we want to be consistent in the experiments, we let the algorithms iterate

a fixed number of times.
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Figure 4.8: Errors and number of consistent results within top-100 when DaRWR
and DaKatz is run with the given number of iterations.

Effects of the storage schemes on the number of updates

As mentioned in Section 4.2.2, the algorithms CRS-Full and CRS-Half can avoid

some updates but COO-Half cannot, even they have no effect on pt. In our query

set, the average number of papers is 24.7. In the first iteration, pt−1 has only a

few positive values on average, and CRS-Full updates pt only for the corresponding

papers in Q. Since n � 24.7, CRS-Full avoids roughly 12 million nonzeros/updates

in the first iteration. This number is roughly 6 million for CRS-Half. COO-Half

traverses all 12 million nonzeros and does the corresponding updates even if most

of them have no effect for the first couple of iterations. However, the number of

positive values in pt−1 increases exponentially. As Fig. 4.9 shows, the shortcuts in

CRS-based algorithms are not useful after the 8th iteration. The figure also implies

that the citation graph is highly connected since DaRWR and DaKatz seem to

traverse almost all the nonzeros in A. That is, random walks and paths can reach to
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Figure 4.9: Number of updates per iteration of the algorithms.

almost all vertices in the graph. We observed that 97% of the vertices of the citation

graph G are in a single connected component.

Effects of partitioning and ordering on nonzero patterns

The nonzero pattern of the adjacency matrix B is given in Fig. 4.10(a). As the

figure shows, the nonzeros are distributed in all the matrix. In our experiments, the

papers are originally numbered with respect to the order we parse their metadata.

When B is ordered by using the RCM heuristic, the nonzero pattern (Fig. 4.10(b))

is densified near the diagonal as expected. The bandwidths of the original and RCM

ordered B matrices are 981, 287 and 460, 288, respectively. Although the bandwidth

is reduced more than half, it is still large. Figure 4.10(c) shows the nonzero pattern

of B when ordered with the AMD heuristic. The nonzeros are densified inside one

horizontal and one vertical block. We observed that 80% of the nonzeros are inside this

region. As the figure shows, the remaining nonzeros are located in smaller horizontal

and vertical regions which also may be helpful to reduce the number of cache misses.
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(a) Original (b) RCM (c) AMD (d) SlashBurn

Figure 4.10: The nonzero pattern of B (a) when ordered with RCM (b), AMD (c), and
SlashBurn (d). Nonzeros are colored with red and white areas show empty regions.

The pattern of SlashBurn also possesses similar characteristics: Figure 4.10(d) shows

the arrow-shaped pattern obtained after ordering B with SlashBurn. All the nonzeros

are densified inside the pattern, and the number of cache misses is expected to be

much less.

As described in Section 4.2.3, we first partition B in the column-net model to

reorder it. To do that, we use K = {2, 4, 8, 16, 32, 64} and create 6 different partitions.

For each partition, we create a permutation matrix P and reorder B as B′ = PBPT .

The left-most images in Figs. 4.11(a)–4(c) show the structure of the nonzero pattern

of B′ for K = 2, 4, and 8, respectively. In the figures, the horizontal (vertical) lines

separate the rows (columns) of the matrix w.r.t. their part numbers. The diagonal

blocks in the figure contain the nonzeros bijs where the ith and jth row of B are

assigned to the same part. We permute the rows and columns of these blocks by

using the ordering heuristics RCM, AMD, and SlashBurn. Figure 4.11 also shows the
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nonzero patterns of these further permuted matrices for each partition with K = 2,

4, and 8.

Performance analysis

Figures 4.12(a), (b), and (c) show the number of updates per seconds (nups)

for each algorithm when RCM, AMD, and SlashBurn are used, respectively. This

experiment counts the number of updates that occur in memory, even if they are

nilpotent, i.e., they do not change a value. The configuration which takes advantage

of partitioning most is the COO-Half equipped with AMD ordering for which nups

increases from 270 million to 340 million. As the figure shows, SlashBurn does not

bring a performance improvement relative to AMD and RCM. Hence, considering its

complexity, we can suggest that using AMD and RCM is more practical, especially

when the time spent for the ordering is important.

Table 4.5: Number of nonzeros inside and outside of the diagonal blocks of B′ after
reordering.

K 2 4 8 16 32 64

nnz in 5.62M 4.92M 4.39M 3.80M 3.46M 2.95M
nnz out 0.34M 1.04M 1.57M 2.16M 2.50M 3.01M

Although the nonzeros of B′ seem evenly distributed in Fig. 4.11, as Table 4.5

shows, for K = 2 and 4, the percentage of the nonzeros inside diagonal blocks of B′

are 94% and 83%, respectively. Hence, the nonzeros are densified inside these blocks

as expected. The number of nonzeros outside the diagonal blocks is more when K

increases. However, the diagonal blocks tend to get smaller and denser which may
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(a) B′ (left) with RCM, AMD, and SlashBurn for K = 2

(b) B′ (left) with RCM, AMD, and SlashBurn for K = 4

(c) B′ (left) with RCM, AMD, and SlashBurn for K = 8

Figure 4.11: The nonzero pattern of the permuted adjacency matrix B with different
partitions and ordering heuristics. The row set of each part is shown with a different
color. The diagonal blocks contain bijs where row i and row j of B are in the same
part.
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Figure 4.12: Number of updates per second (nups) for each algorithm and ordering
on Arch1 when DaRWR is executed for 20 iterations.

improve the cache locality. As Figures 4.12 shows, a consistent improvement can be

observed for all the algorithms CRS-Full, CRS-Half, and COO-Half, and ordering

heuristics RCM, AMD, and SlashBurn up to K = 8 and 16. But when K gets

more than 16, no significant improvement can be observed and the performance can

even get worse. There are two main reasons for this phenomena: first, the fraction

of block-diagonal nonzeros continues to decrease, and second, the diagonal blocks

becomes smaller than required. That is the cache locality may be optimized to the

most, hence, a further reduction on the block size is unnecessary. Here, the best

K in terms of performance depends on the configuration. We tested the algorithms

with different K values to find the best configuration. As the figure shows, with

CRS-Full, the maximum nups is around 80 million for K = 8 (RCM), 16 (AMD),

and K = 16 (SlashBurn). By compressing the matrix increases the nups for CRS-

Half up to 190 million with K = 16 (AMD). And with blocking used in COO-Half,
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nups increases to 340 million with K = 16 (AMD) which is the maximum for this

experiment.

The nups of COO-Half seems to be much superior in Fig. 4.12. However, the

algorithm itself needs to do more computation since it cannot skip any of the updates

even if they are nilpotent. To compare the actual response times of the configurations,

we used 286 queries and measured the average response time on each architecture.

Figure 4.13 shows the execution times of DaRWR and DaKatz for different algo-

rithms, Ks, and ordering heuristics on the target architecture Arch1. For the rest of

the figures, SB denotes the SlashBurn ordering heuristic.
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Figure 4.13: Execution times in seconds for DaRWR (left) and DaKatz (right)
using each algorithm with different Ks and ordering heuristics on Arch1. The values
are the averages of the running times for 286 queries. For each query, the algorithms
perform 20 DaRWR iterations and 10 DaKatz iterations.

As concordant with nups values, for DaRWR, the fastest algorithm is COO-

Half where K = 16 and the diagonal blocks are ordered with AMD. The average

query response time for this configuration, which is being used in theadvisor, is 1.61

seconds. Compared with the execution time of CRS-Full with the original ordering,
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which is 4.80 seconds, we obtain 3 times improvement. When K = 1, i.e., if there is

no partitioning, the execution time of COO-Half is 2.29. Hence, we obtain a speedup

of more than 2 due to ordering and 42% additional improvement due to partitioning.

For DaKatz experiment on Arch1, the best configuration is not very visible. In

our experiments, the minimum average query response time, 0.89 seconds, is obtained

again by COO-Half when it is equipped with AMD and when K is 16. On the

other hand, the best CRS-Full configuration answers a query in 0.90 seconds on

average (with AMD and K = 16). Although the ordering and partitioning still

help a lot, the improvements due to algorithmic modifications are only minor for

DaKatz. As described above and shown by Fig. 4.9, the number of updates required

by CRS-Full only matches that of COO-Half after the 8th iteration and DaKatz

converges only in 10 iterations for our citation graph. That is the total work required

by CRS-Full is much less than both CRS-Half and COO-Half for DaKatz. Hence,

the update overhead cannot be easily compensated by reducing the bandwidth and

improving cache locality. Still, the average query response time is reduced from 1.89

to 0.89 thanks to ordering and partitioning.

For completeness, in Fig. 4.14, we give the results when 20 DaKatz iterations

are performed. On all architectures, CRS-Full configurations are much slower than

CRS-Half and COO-Half configurations as expected. And the differences are more

visible. Furthermore, the relative performance of DaKatz algorithms is more similar

to that of DaRWR algorithms with 20 iterations.

We tested our modifications on two other architectures described above. As shown

in Fig. 4.15, the results are similar for DaRWR on Arch2. COO-Half with AMD

is the fastest configuration, but this time with K = 8. However, matrix compression
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Figure 4.14: Execution times of DaKatz algorithms in seconds on architectures on
Arch1 (a), Arch2 (b), and Arch3 (c) with different Ks and ordering heuristics.
The values are the averages of the running times for 286 queries. For each query, 20
DaKatz iterations are performed.
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Figure 4.15: Execution times in seconds for DaRWR (left) and DaKatz (right)
using each algorithm with different Ks and ordering heuristics on Arch2. The values
are the averages of the running times for 286 queries. For each query, the algorithms
perform 20 DaRWR iterations and 10 DaKatz iterations.

seems to have a negative effect on CRS-Half. Its execution time is more than CRS-

Full with the original ordering. This is unexpected since both on Arch1 (Fig. 4.13)

and Arch3 (Fig. 4.16), CRS-Half is faster than CRS-Full. On Arch3, the fastest

DaRWR algorithm is again COO-Half where the average query response time is 0.72

seconds with K = 8 and the AMD heuristic. Compared to the time of CRS-Full

based DaRWR with no ordering, which is 1.18 seconds, the improvement is 39%. If

we apply only matrix compression with COO-Half, the query response time is 1.04

seconds. Hence, we can argue that we obtained 31% improvement by permuting the

reduced matrix. If we only use AMD, i.e., when K = 1, the query response time of

COO-Half is 0.76. This implies roughly 5% improvement due to partitioning alone.

Since Arch3’s cache is larger than the others, we believe that when the matrix gets

large, i.e., when the number of papers in our database increases, the improvements

will be much higher on all architectures but especially on the last architecture.
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Figure 4.16: Execution times in seconds for DaRWR (left) and DaKatz (right)
using each algorithm with different Ks and ordering heuristics on Arch3. The values
are the averages of the running times for 286 queries. For each query, the algorithms
perform 20 DaRWR iterations and 10 DaKatz iterations.

For DaKatz on Arch2 (Fig. 4.15) and Arch3 (Fig. 4.16), the best algorithm is

clearly CRS-Full. The RCM ordering yields 40% (0.45 to 0.37 seconds) and 18% (1.06

to 0.65 seconds) improvements on the average query response time, respectively. How-

ever, the partitioning is not useful in practice for DaKatz on these architectures since

it improves the query response times of other configurations but has a negative effect

on CRS-Full with RCM. A similar pattern is also visible for the same DaRWR and

DaKatz configurations especially on architectures Arch2 and Arch3. The parti-

tioning and the corresponding permutation on B are designed while taking the halved

matrix into account: an access to a nonzero bij yields also the processing of bji. That

is, the nonzeros to be processed are coming from a two-dimensional region. Hence,

having the nonzeros inside diagonal blocks, COO-Half should be the algorithm which

utilizes the optimizations the most, especially considering its blocked access pattern.

On the contrary, for the same reasons, CRS-Full should be the worst algorithm for
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exploiting the optimizations, since the upcoming accesses in CRS-Full are only in

column dimension. Furthermore, partitioning and permutation increase the band-

width of the matrix which is arguably the most important criterion for CRS-Full.

Since RCM aims to minimize the bandwidth of the matrix, the performance can be

reduced when an additional partitioning is used. On the other hand, when the cache

is not enough or the bandwidth is still large after RCM, partitioning may take ef-

fect and improve the performance. This can be observed in Fig. 4.13 for the target

architecture Arch1 which has 6 and 8 times less cache than Arch2 and Arch3,

respectively.

Considering the number of updates of CRS-Full is much less than COO-Half for the

first few iterations, it is expected to be faster than COO-Half. On the other hand,

when 20 DaKatz iterations are performed instead of 10, COO-Half with AMD is

again the best configuration as shown in Fig. 4.14.

4.2.5 Summary

In this work, we proposed an efficient implementation of an SpMxV-type problem

which arises in our publicly available citation, venue, and expert recommendation

service, theadvisor. We proposed compression and bandwidth reduction techniques

to reduce the memory usage and hence, the bandwidth required to bring the matrix

from the memory at each iteration. We also used matrix ordering techniques to reduce

the number cache misses. Experimental results show that these modifications greatly

help to reduce the query execution time.

As a future work, we are planning to develop new ideas to further reduce the

query response time. As far as the service is running, this will be one of the tasks
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we are interested in. Note that in SpMxV operations, it is very hard to obtain linear

speedup with shared memory parallelization. Hence, to maximize the throughput we

chose to use one processor per query. However, we believe that such parallelism can

still be effective for theadvisor especially when the number concurrent requests is

less than the number of processors allocated in the cluster.

Another work we are interested in is to make the service much faster via a hybrid

implementation of DaRWR (or DaKatz) which uses a combination of CRS-Full,

CRS-Half, and COO-Half. In its simple form, the hybrid approach can use CRS-Full

in the first few iterations then switch to COO-Half to utilize the efficiency of the

algorithms to the most. The overhead of such a scheme is storing the citation matrix

multiple times and a transition cost incurred while switching from one algorithm to

another. We believe that a hybrid implementation is promising and we aim to do a

thorough investigation in the near future.

4.3 Diversifying Bibliographic Search

Diversifying the results of the search process is necessary to increase the amount of

information one can reach via an automized search. This study targets the problem of

result diversification in citation-based bibliographic search, assuming that the citation

graph itself is the only information available, and no categories or intents are known.

The contributions of this work is three-fold: We survey various random-walk-based

diversification methods and enhance them with the direction awareness property to

allow the users to reach either old, well-cited, well-known research papers or recent,

less-known ones. Next, we propose a set of novel algorithms based on vertex selection

and query refinement. A set of experiments with various evaluation criteria shows
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that the proposed γ-RLM algorithm performs better than the existing approaches

and is suitable for real-time bibliographic search in practice.

4.3.1 Introduction

Diversifying the results of the search process is an important task to increase

the amount of information one can reach via an automized search tool. There ex-

ists many recommender systems that personalize the output with respect to user’s

query/history. For several applications personalization can be an important limitation

while reaching all the relevant information [36], and diversification can be used to in-

crease the coverage of the results and hence, improve user satisfaction [4, 30, 46, 101].

Most diversification studies in the literature rely on various assumptions, e.g.,

items and/or queries are categorized beforehand [135], or there is a known distribution

that specifies the probability of a given query belonging to some categories [4]. In

the context of information retrieval or web search, since the search queries are often

ambiguous or multifaceted, a query should represent the intent of an average user

with a probability distribution [135]. Intent-aware methods in the literature aim to

cover various relevant categories with one or more objects.

In this work, we target the bibliographic search problem assuming that the citation

graph itself is the only information we have, and no categories or intents are available.

Hence, we aim to diversify the results of the citation/paper recommendation process

with the following objectives in mind: (1) the direction awareness property is kept,

(2) the method should be efficient enough to be computable in real time, and (3) the

results are relevant to the query and also diverse among each other. The contribution

of this work is three-fold:
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• We survey various random-walk-based diversity methods (i.e., GrassHopper [147],

DivRank [101], Dragon [128]) and enhance them with the direction awareness

property.

• We propose new algorithms based on vertex selection (LM, γ-RLM) and query

refinement (GSparse).

• We perform a set of experiments with various evaluation criteria including rel-

evance metrics, diversity metrics and intent-aware metrics. The experiments

show that the proposed γ-RLM algorithm is suitable in practice for real-time

bibliographic search.

All of the algorithms in this work are implemented and tested within theadvisor and

the best one (γ-RLM) is currently being used to power the system.

4.3.2 Background

Result Diversification on Graphs

The importance of diversity in ranking has been discussed in various data mining

fields, including text retrieval [18], recommender systems [149], online shopping [130],

and web search [30]. The topic is often addressed as a multi-objective optimization

problem [36], which is shown to be NP-hard [19], and, therefore, some greedy [4,

150] and clustering-based [94] heuristics were proposed. Although there is no single

definition of diversity, different objective functions and axioms expected to be satisfied

by a diversification system were discussed in [46].

Diversification of the results of random-walk-based methods on graphs only at-

tracted attention recently. GrassHopper is one of the earlier algorithms and ad-

dresses diversified ranking on graphs by vertex selection with absorbing random
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walks [147]. It greedily selects the highest ranked vertex at each step and turns

it into a sink for the next steps. Since the algorithm has a high time complexity, it

is not scalable to large graphs. DivRank [101], on the other hand, combines the

greedy vertex selection process in one unified step with the vertex reinforced random

walk model. This algorithm updates the transition matrix at each iteration with re-

spect to the current or cumulative ranks of the nodes to introduce a rich-gets-richer

mechanism to the ranking. But since the method updates the full transition matrix at

each iteration, more iterations are needed for convergence; therefore, the computation

cost increases. The shortcomings of those techniques were discussed in [90] in detail.

[128] formalizes the problem from an optimization viewpoint, proposes the goodness

measure to combine relevancy and diversity, and presents a near-optimal algorithm

called Dragon. These algorithms are further discussed in Section 4.3.3.

Coverage-based methods (such as [76],[90]) are also interesting for diversification

purposes; however, they do not preserve the direction awareness property of the rank-

ing function. Since our aim is to diversify the results of our paper recommendation

service, we omitted the results of those coverage-based methods in our experiments.

Problem Definition

Let G = (V,E) be a directed citation graph where V = {v1, . . . , vn} is the vertex

set and E, the edge set, contains an edge (u, v) if paper u cites paper v. Let δ+(u) and

δ−(u) be the number of references of and citations to paper u, respectively. We define

the weight of an edge, w(u, v), based on how important the citation is; however,

for the sake of simplicity we take w(u, v) = 1 for all (u, v) ∈ E. Therefore, the

nonsymmetric matrix W : V × V becomes a 0-1 matrix. Table 4.6 summarizes the

notation used throughout the paper.

143



We target the problem of paper recommendation assuming that the researcher

has already collected a list of papers of interest [67]. Therefore, the objective is to

return papers that extend that list: given a set of m seed papers Q = {q1, . . . , qm},

s.t. Q ⊆ V , and a parameter k, return top-k papers which are relevant to the ones

in Q. With the diversity objective in mind, we want to recommend papers to be not

only relevant to the query set Q, but also covering different topics around the query

set.

PageRank, Personalized PR, and direction-aware PPR

Let G′ = (V,E ′) be an undirected graph of the citation graph, p(u, v) be the

transition probability between two nodes (states), and d be the damping factor.

PageRank (PR) [15]

We can define a random walk on G′ arising from following the edges (links) with

equal probability and a random restart at an arbitrary vertex with (1−d) teleportation

probability. The probability distribution over the states follows the discrete time

evolution equation

pt+1 = P pt, (4.26)

where pt is the vector of probabilities of being on a certain state at iteration t, and

P is the transition matrix defined as:

P(u, v) =

{
(1− d) 1

n
+ d 1

δ(v)
, if (u, v) ∈ E ′

(1− d) 1
n
, otherwise.

(4.27)

If the network is ergodic (i.e., irreducible and non-periodic), (6.1) converges to a

stationary distribution π = Pπ after a number of iterations. And the final distribution

π gives the PageRank scores of the nodes based on centrality.
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Table 4.6: Notation for diversity on bibliographic data

Symbol Definition

G
ra

p
h

G directed citation graph, G=(V,E)
G′ undirected citation graph, G′=(V,E′)
n |V |, number of vertices
w(u, v) weight of the edge from u to v
W weight matrix
δ−, δ+(v) # incoming or outgoing edges of v
δ(v) δ−(v) + δ+(v), # neighbors of v
d(u, v) shortest distance between u and v in G′

N`(S) `-step expansion set of S ⊆ V

Q
u

er
y

Q a set of seed papers {q1, . . . , qm}, Q ⊆ V
m |Q|, number of seed papers
k required number of results, k ≤ n
R a set of recommended vertices, R ⊆ V
d damping factor of RWR, 0<d≤1
κ direction-awareness parameter, 0 ≤ κ ≤ 1
γ relaxation parameter of γ-RLM

R
an

d
om

w
al

k

p∗ prior probability distribution
t iteration, or timestamp
pt probability vector at iteration t
ηt vector of number of visits at iteration t
A symm. n× n transition matrix based on G
A′ struct.-symm. n× n trans. matrix based on G′

P n× n transition matrix
π p∞, stationary probability vector,

∑
π(.)=1

ε convergence threshold

M
ea

su
re

s

S a subset of vertices, S ⊆ V
Ŝ top-k results according to π
rel(S) normalized relevance of the set
diff(S) difference ratio of two sets
use(S) usefulness of the set
dens`(S) `-step graph density
σ`(S) `-expansion ratio

In practice, the algorithm is said to be converged when the probability of the

papers are stable. Let

∆t = (pt(1)− pt−1(1), . . . ,pt(n)− pt−1(n)) (4.28)
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be the difference between probability distributions at iteration t and t − 1. The

process is in the steady state when the L2 norm of ∆t is smaller than the convergence

threshold ε.

Personalized PageRank (PPR) [54]

In our problem, a set of nodes Q was given as a query, and we want the random

walks to teleport to only those given nodes. Let us define a prior distribution p∗ such

that:

p∗(u) =

{
1/m, if u ∈ Q
0, otherwise.

(4.29)

If we substitute the two (1/n)s in (6.2) with p∗, we get a variant of PageRank,

which is known as personalized PageRank or topic-sensitive PageRank [54]. PPR

scores can be used as the relevance scores of the items in the graph. The rank of each

seed node is reset after the system reaches to a steady state, i.e., ∀q ∈ Q, πq ← 0,

since the objective is to extend Q with the results.

Direction-aware Random Walk with Restart DaRWR [72]

We defined a direction awareness parameter κ ∈ [0, 1] to obtain more recent or

traditional results in the top-k documents [72]. Given a query with inputs k, a seed

paper set Q, damping factor d, and direction awareness parameter κ, Direction-aware

Random Walk with Restart (DaRWR) computes the steady-state probability vector

π. The ranks of papers after iteration t is computed with the following linear equation:

pt+1 = p∗ + Apt, (4.30)
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Figure 4.17: Average publication year of top-10 recommendations by DaRWR based
on d and κ.

where p∗ is an n × 1 restart probability vector calculated with (6.3), and A is a

structurally-symmetric n× n matrix of edge weights, such that

aij =


d(1−κ)
δ+(i)

, if (i, j) ∈ E
dκ
δ−(i)

, if (j, i) ∈ E
0, otherwise.

(4.31)

The transition matrix P of the RWR-based methods is built using A and p∗; however,

the edge weights in rows can be stored and read more efficiently with A in practice [70].

Figure 4.17 shows that the direction-awareness parameter κ can be adjusted to

reach papers from different years with a range from late 1980’s to 2010 for almost all

values of d. In our service, the parameter κ can be set to a value of user’s preference.

It allows the user to obtain recent papers by setting κ close to 1, or older papers by

setting κ close to 0.

4.3.3 Diversification methods

We classify the diversification methods for the paper recommendation problem

based on whether the algorithm needs to rank the papers only once or multiple
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times. The first set of algorithms run a ranking function (e.g., PPR, DaRWR, etc.)

once and select a number of vertices to find a diverse result set. The algorithms in

the second set run the ranking function k times to select each result, and refine the

search with some changes at each step. Although the former class of algorithms are

preferred for practical use, they may not be able to reach to the intended diversity

levels due to the highly greedy nature of the vertex selection process.

Diversification by vertex selection

The following approaches are used after getting the direction-aware relevancy

(prestige) rankings of the vertices for a given set of seed nodes. The ranking function

is selected as DaRWR with parameters (κ, d).

DivRank: Vertex-reinforced random walks [101]

For the random walk based methods mentioned in Section 4.3.2, the probabilities

in the transition matrix P do not change over the iterations. Using vertex-reinforced

random walk, DivRank adjusts the transition matrix based on the number of visits

to the vertices. The original DivRank assumes that there is always an organic link

for all the nodes returning back to the node itself with probability (1−α):

p0(u, v) =

{
αw(u,v)

δ(i)
, if u 6= v

1− α, otherwise,
(4.32)

where w(u, v) is equal to 1 for (u, v) ∈ E ′, and 0 otherwise. The transition matrix Pt

at iteration t is computed with

Pt(u, v) = (1− d) p∗(v) + d
p0(u, v) ηt(v)∑
z∈V p0(u, z) ηt(z)

, (4.33)
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where ηt(v) is the number of visits of vertex v. It ensures that the highly ranked

nodes collect more value over the iterations, resulting in the so called rich-gets-richer

mechanism.

For each iteration of the defined vertex-reinforced random walk, the transition

probabilities from a vertex u to its neighbors are adjusted by the number of times

they are visited up to that point ηt(v). Therefore, u gives a high portion of its

rank to its frequently visited neighbors. Since the tracking of ηt is nontrivial, the

authors propose to estimate it using two different models. One way is to employ

the cumulative ranks, i.e., E[ηt(v)] ∝
∑t

i=0 pi(v), and since the ranks will converge

after sufficient number of iterations, it can also be estimated with pointwise ranks as

E[ηt(v)] ∝ pt(v).

While adapting DivRank to our directional problem, we identified two problems:

first, the initial ranks of all nodes should be set to a nonzero value; otherwise, the

ranks cannot be distributed with (6.5) for both pointwise and cumulative estimation

of ηt. Therefore, we set p0(v) = 1/n for all v ∈ V . Second, an organic link returning

back to node itself enables the node to preserve its rank. This is problematic since

p∗ is only set for seed papers, and they tend to get richer over time. However, our

objective is to distribute the probabilities over V \Q to get a meaningful ranking. We

solved this problem by removing the organic links of seed papers, hence, distributing

all of their ranks towards their neighbors instead of only α of them.
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With the listed modifications, we propose the direction-aware DivRank algo-

rithm using the transition probabilities

p′0(u, v) =



0, if u ∈ Q, u = v
(1−κ)
δ+(u)

, if u ∈ Q, u 6= v, (u, v) ∈ E
κ

δ−(u)
, if u ∈ Q, u 6= v, (v, u) ∈ E

(1− α), if u /∈ Q, u = v

α (1−κ)
δ+(u)

, if u /∈ Q, u 6= v, (u, v) ∈ E
α κ
δ−(u)

, if u /∈ Q, u 6= v, (v, u) ∈ E

(4.34)

which can be directly used in (6.5). Depending on the estimation method to be

whether cumulative or pointwise, we refer to the direction-aware variants of the algo-

rithm as CDivRank and PDivRank, respectively.

Dragon: Maximize the goodness measure [128]

One of many diversity/relevance optimization functions found in the literature is

the goodness measure. It is defined as:

fG′(S) = 2
∑
i∈S

π(i)− d
∑
i,j∈S

A′(j, i)π(j)− (1− d)
∑
j∈S

π(j)
∑
i∈S

p∗(i), (4.35)

where A′ is the row-normalized adjacency matrix of the graph. The original algorithm

runs on the undirected citation graph G′ and uses a greedy heuristic to find a near-

optimal solution set. Accordingly, the direction-aware goodness measure fG can be

defined as:

fG(S) = 2
∑
i∈S

π(i)− dκ
∑
i,j∈S

A(j, i)π(j)− d(1− κ)
∑
i,j∈S

A(i, j)π(i), (4.36)

where A is the row-normalized adjacency matrix based on directed graph, and the

last part of (6.15) is always zero
(∑

i∈S p
∗(i) = 0

)
since seed papers are never included

in S. The direction-aware variant of the algorithm, running on the directed citation

graph and using the ranking vector DaRWR, is referred to as Dragon.
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LM: Choose local maximas

Because of the smoothing process of random walks, frequently visited nodes tend

to increase the ranks of its neighbors [101]. Therefore, we argue that computing local

maxima and returning top-k of them will guarantee that the nodes returned this way

are recommended by taking the smoothing process of random walks into account.

Once the ranks are computed, the straightforward approach to find the local max-

ima is to iterate over each node and check if its rank is greater than all of its neighbors’

with an O(|E|) algorithm. However, the algorithm runs much faster in practice since

every rank comparison between two unmarked nodes (either local maxima or not)

will mark one of them. The LM algorithm is given in Algorithm 12.

Algorithm 12: Diversify with local maxima (LM)

Input: G′ = (V,E′), π, k
Output: An ordered set of recommendations S
L← empty list of (v, πv)
for each v ∈ V do

lm[v]← LocalMax

for each v ∈ V do
if lm[v] =LocalMax then

for each v′ ∈ adj[v] do
if πv′ < πv then

lm[v′]← NotLocalMax

else
lm[v]← NotLocalMax
break

if lm[v] =LocalMax then
L← L ∪ {(v, πv)}

PartialSort(L, k) w.r.t πi non-increasing
S ← L[1..k].v, i.e., top-k vertices
return S
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γ-RLM: Choose relaxed local maximas

The drawback of diversifying with local maxima is that for large k’s (i.e., k > 10),

the results of the algorithm are generally no longer related to the queried seed papers,

but some popular ones in unrelated fields, e.g., a set of well-cited physics papers can

be returned for a computer science related query. Although this might improve the

diversity, it hurts the relevance, hence, the results are no longer useful to the user.

In order to keep the results within a reasonable relevancy to the query and to

diversify them, we relax the algorithm by incrementally getting local maxima within

the top-γk results until |S| = k, and removing the selected vertices from the subgraph

for the next local maxima selection. We refer this algorithm as parameterized relaxed

local maxima (γ-RLM) where γ is the relaxation parameter. Note that 1-RLM

reduces to DaRWR and ∞-RLM reduces to LM. The outline of the algorithm is

given in Algorithm 13. In the experiments, we select γ = k and refer this algorithm

as k-RLM. In Section 4.3.4, we devise other experiments to see the effects of γ with

respect to different measures.

Algorithm 13: Diversify w/ relaxed local maxima (γ-RLM)

Input: G′ = (V,E′), π, k, γ
Output: An ordered set of recommendations S
R← PartialSort(V, γk) w.r.t. πi non-increasing
R← R[1 : γk]
while |S| < k do

R′ ← FindLocalMaxima(G,R, π)
if |R′| > k − |S| then

Sort(R′) w.r.t. πi non-increasing
R′ ← R′[1 : (k − |S|)]

S ← S ∪R′
R← R \R′

return S
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Diversification by query refinement

In this set of diversification algorithms, the ranking function is called multiple

times while some of the parameters or graph structure are altered between those

rankings.

GrassHopper: Incremental ranking using absorbing random walks [147]

GrassHopper is a well-known diversification algorithm which ranks the graph

multiple times by turning at each iteration the highest-ranked vertex into a sink

node32. Since the probabilities will be collected by the sink vertices when the random

walk converges, the method estimates the ranks with the number of visits to each

node before convergence.

The original method uses a matrix inversion to find the expected number of visits;

however, inverting a sparse matrix makes it dense, which is not practical for the large

and sparse citation graph we are using. Therefore, we estimate the number of visits

by iteratively computing the cumulative ranks of the nodes with DaRWR.

GSparse: Incremental ranking by graph sparsification

In this algorithm, in contrast with GrassHopper, after executing the ranking

function, we propose to sparsify the graph by removing all reference and citation

edges around the highest ranked node and repeat the process until all k nodes are

selected. Note that GrassHopper converts the selected node into a sink node while

GSparse disconnects it from the graph (see Alg. 14). This way, the graph around

the node becomes less dense, hence, they will attract less visits in a random walk.

32A sink node only has a single outgoing edge to itself, so that all its rank stays trapped within
the sink.
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Algorithm 14: Diversify by graph sparsification (GSparse)

Input: G = (V,E), Q, k
Output: An ordered set of recommendations S
S ← ∅
G′ ← G
for iter = 1→ k do

ranks← DaRWR(G′ = (V ′, E′),Q)
v ← argmax(ranks)
S ← S ∪ {v}
for each v′ ∈ adj[v] do

E′ ← E′ \ {(v, v′)}
V ′ ← V ′ \ {v}

return S

4.3.4 Experiments

Evaluation measures

We previously investigated the shortcomings of evaluating result diversification as

a bicriteria optimization problem with a relevance measure that ignores diversity, and

a diversity measure that ignores relevance to the query in [76]. Since the problem is

similarly bicriteria, we argue that the relevance and diversity of the results should be

evaluated with separate measures instead of a combined one.

Normalized relevance: The relevancy score of a set can be computed by comparing

the original ranking scores of the resulting set with the top-k ranking list [128], defined

as

rel(S) =

∑
v∈S πv∑k
i=1 π̂i

, (4.37)

where π̂ is the sorted ranks in non-increasing order.

Difference ratio: The results of a diversity method are expected to be somewhat

different than the top-k relevant set of results since, as our experiments will show, the

set of nodes recommended by the original DaRWR are not diverse enough. This is
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expected since highly ranked nodes will also increase the ranks of their neighbors [101].

Nevertheless, the original result set has the utmost relevancy. This fact can mislead

the evaluation of the experimental results. Therefore, we decided to measure the

difference of each result set from the set of original top-k nodes. Given the top-k

relevant set Ŝ, the difference ratio is computed with

diff(S, Ŝ) = 1− |S ∩ Ŝ|
|S|

. (4.38)

Usefulness: The original ranking scores π actually show the usefulness of the nodes.

Since these scores usually follow a power law distribution, the high ranked nodes

collect most of the scores and the contribution of two low-ranked nodes to the rel

measure can be almost the same even though the gap between their positions in the

ranking is huge. Yet, the one with the slightly higher score might be useful where the

other might not due to this gap. We propose the usefulness metric to capture what

percentage of the results are actually useful regarding their position in the ranking:

use(S) =
|{v ∈ S : πv ≤ π̃}|

|S|
, (4.39)

where π̃ = π̂10×k, i.e., the relevancy score of the node with rank 10 × k, for k = |S|,

and use(S) gives the ratio of the recommendations that are within top 10× k of the

relevancy list.

`-step graph density: A variant of graph density measure is the `-step graph

density [128], which takes the effect of in-direct neighbors into account. It is computed

with

dens`(S) =

∑
u,v∈S,u6=v d`(u, v)

|S| × (|S| − 1)
, (4.40)

where d`(u, v) = 1 when v is reachable from u within ` steps, i.e., d(u, v) ≤ `, and 0

otherwise. The inverse of D`(S) is used for the evaluation of diversity in [101].
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`-expansion ratio: Other diversity measures, the expansion ratio and its variant

`-expansion ratio [90] measure the coverage of the graph by the solution set. It is

computed with

σ`(S) =
|N`(S)|
n

, (4.41)

where N`(S) = S ∪ {v ∈ (V − S) : ∃u ∈ S, d(u, v) ≤ `} is the `-step expansion set.

Goodness: Given in (4.36).

Average year: The average publication year of the recommendation set.

Average pairwise distance: Pairwise shortest distance between the results is a

measure of how connected or distant the recommendations are to each other. It is

computed with

APD(S) =

∑
u,v∈S,u6=v d(u, v)

|S| × (|S| − 1)
. (4.42)

Average MIN distance to Q: Distance of the recommendations to the closest seed

paper is a measure of relevance regarding the query:

AMD(S) =

∑
v∈S minp∈Q d(s, p)

|S|
. (4.43)

Note that the intent-aware measures, such as α-normalized discounted cumulative

gain (α-nDCG@k) [30], intent-aware mean average precision (MAP-IA) [4], are not

included to the discussions, but they are important measures for evaluating the di-

versity of the results when the data and queries have some already known categorical

labels. Our problem has no assumptions of a known distribution that specifies the

probability of an item belonging to a category.

As we list a number of measures, it is important to show that our experiments do

not favor any group of measures that correlate with each other. Here, we investigate
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Table 4.7: Correlations of various measures. Pearson correlation scores are given on
the lower triangle of the matrix. High correlations are highlighted.

rel diff use goodness dens1 dens2 σ1 σ2 APD AMD
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-0.37 0.42 -0.78 0.51 0.52 0.24 0.47 0.43 -0.15 –

the listed measures (except average publication year and runtime) by computing their

pairwise correlations based on the results of the mentioned algorithms in Section 4.3.3.

Table 6.1 shows the correlations of 10 measures as scatter plots as well as their

correlation scores. For the graph diversity measures, `-step expansion ratios (σ1 and

σ2) are highly correlated among each other, showing that the reachable sets expand

independent of the seed nodes (queries), and also proportional to a ratio, which is the
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average degree of the graph. On the other hand, none of the relevance or diversity

measures has a high correlation with other measures.

Dataset collection and queries

We retrieved the metadata information on 2.2M computer science articles (as

of May 2013) from DBLP33, 830K technical reports on physics, mathematics, and

computer science from arXiv34, and 3M medical publications from PMC open access

subset35. This data is well-formatted and disambiguated; however, it contains very

few citation information (less than 470K edges). To increase the number of edges

and inter-connect different disciplines, we imported the publications and reference

relations from CiteSeer36, ArnetMiner37, and Related-Work project38. However, most

of the data are automatically generated and are often erroneous. We mapped each

document to at most one document in each dataset with the title information (using

an inverted index on title words and Levenshtein distance) and publication years.

Using the disjoint sets, we merged the papers and their corresponding metadata from

four datasets. The papers without any references or incoming citations are discarded.

The final citation graph has about 11.4M papers and 33.1M directed edges, and will

be used in the next version of our service.

The query set is composed of the actual queries submitted to theadvisor service.

We selected about 1840 queries where each query is a set Q of paper ids obtained from

33http://dblp.uni-trier.de/

34http://arxiv.org/

35http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/

36http://citeseerx.ist.psu.edu/

37http://arnetminer.org/DBLP_Citation

38http://blog.related-work.net/data/
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the bibliography files submitted by the users of the service who agreed to donating

their queries for research purposes. |Q| varies between 1 and 697, with an average of

33.62.

Results

We run the algorithms on theadvisor citation graph with varying k values (i.e.,

k ∈ {5, 10, 20, 50, 100}) and with the following parameters: α in (6.4) is selected as

0.25 as suggested in [101]. For the DaRWR ranking, we use the default settings

of the service, which are d = 0.9 for damping factor, and κ = 0.75 to get more

recommendations from recent publications. In each run, the selected algorithm gives

a set of recommendations S, where S ⊆ V , |S| = k, and S ∩ Q=∅. The relevance and

diversity measures are computed on S, and the average of each measure is displayed

for different k values. The standard deviations are negligible, hence they are omitted.
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Figure 4.18: Normalized relevance (left) and difference ratio (right) of the result set
with respect to top-k results. Note that relDaRWR = 1 and diffDaRWR = 0 since we
compare the result set against itself. Dragon returns almost the same result set as
top-k.
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Figure 4.19: Scores based on usefulness (left) and goodness (right) measures.
Dragon only slightly improves the goodness measure of the top-k results.

Figure 4.18 shows the normalized relevancy and difference ratio of the recommen-

dations compared to top-k results. It is arguable that a diversity-intended algorithm

should maximize the relevancy since top-k results will always get the highest score,

yet those have almost no value w.r.t. diversity. However, having a very low relevancy

score indicates that the vertices have no connection to the query at all.

Since the normalized relevancy does not give us a clear idea of what is expected

from those diversity-intended methods, we compare the set difference of the results

from top-k relevant recommendations. Figure 4.18-right shows that Dragon gives a

result set that is only 10-15% different than the top-k. In other words, the results of

Dragon differ in only one element when k = 10. Dragon and the original top-k

results score well on direction-aware goodness (Fig. 4.19-right); however, this also

means that the goodness measure gives more importance to relevancy and less to

diversity.

Graph density is frequently used as a diversity measure in the literature [128, 90].

LM, k-RLM, and DivRank variants seem very promising (see Fig 4.20) for such a

160



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 5 10  20  50  100

de
ns

1

k

DaRWR (top-k)
GrassHopper
PDivRank
CDivRank

Dragon
GSparse
LM
k-RLM

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 5 10  20  50  100

de
ns

2

k

DaRWR (top-k)
GrassHopper
PDivRank
CDivRank

Dragon
GSparse
LM
k-RLM

Figure 4.20: `-step graph density (dens`) of the results. Note that dens1'0 for LM
by construction. Both GrassHopper and GSparse improve the diversity based on
graph density for k ≤ 20.

diversity objective. The same algorithms also perform good on `-step expansion ratio

(see Fig. 4.21), which is related to the coverage of the graph with the recommenda-

tions. GrassHopper and GSparse perform worse in these diversity metrics. In

particular, they are more dense than the results of DaRWR.

After evaluating the results on various relevancy and diversity metrics, we are left

with only a couple of methods that performed well on almost all of the measures: LM,

k-RLM, and DivRank variants. However, Figure 4.22 shows that PDivRank and

CDivRank give a set of results that are more connected (i.e., have a low average

pairwise distance) and do not recommend recent publications (see Fig. 4.22-right)

although κ is set accordingly. Since we are searching for an effective diversification

method that runs on top of DaRWR, DivRank variants are no longer good candi-

dates.
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Figure 4.21: `-step expansion ratio (σ`) of the results. DivRank variants improve
the diversity based on σ`.
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Figure 4.22: Results on average minimum distance to the query, average pairwise
shortest distance between recommended papers, and average publication year.

Scalability

The running time of the algorithms is also crucial for the web service since all

the recommendations are computed in real-time. The experiments were run on the

same architecture that the service is currently using. It has a 2.4GHz AMD Opteron

CPU and 32GB of main memory. The CPU has 64KB L1 and 1MB L2 caches.

The DaRWR method and the dataset are optimized based on the techniques given
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in [70]. In order to get a consistent runtime, the experiments are repeated ten times

and averaged over these executions. Although the target architecture has 8 cores, the

entire node was allocated for the experiment, but only one core was used.
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Figure 4.23: Running times of the algorithms for varying k. DaRWR, LM, k-RLM
are equal.

It was expected that the complexity of the methods based on query refinement

depend on and increase linearly with k. Figure 4.23 shows that GrassHopper, and

GSparse have the longest runtimes, even though they were faster than DivRank

variants for k ≤ 10. This behavior was previously mentioned in [101]. The running

time of Dragon is slightly higher than LM and k-RLM since it updates the goodness

vector after finding each result.

In short, the query refinement-based methods (GrassHopper, GSparse) have

linearly increasing runtimes. DivRank variants require more iterations, therefore,

more time to converge. Finally, Dragon, and especially LM and k-RLM are ex-

tremely efficient compared to other methods.

Parameter test

Our experiments on different relevance and diversity measures show that:
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Figure 4.24: Parameter test on γ-RLM with varying γ and k parameters for κ = 0.75.
As the method outputs more results with increasing k, the result set’s relevance
deteriorates and its diversity improves with increasing γ.

• Dragon returns almost the same result set as top-k, while the graph density

and expansion ratio measures also imply low diversity for their results,

• GrassHopper and GSparse perform worse based on the diversity measures,

• DivRank variants sacrifice direction-awareness for the sake of diversity,

whereas LM and k-RLM perform relatively good in almost all experiments, with a

negligible computation cost on top of DaRWR. k-RLM is slightly better than LM

since it also improves the relevancy of the set to the query.
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Figure 4.25: Parameter test on γ-RLM with varying γ and κ parameters for k=20.
γ-RLM significantly improves the diversity of the results. Average publication year
of the results adapt better with the given κ for γ≥5.

In order to understand the effects of the γ parameter to the quality of the result

set, we display the results of γ-RLM with varying γ and k parameters in Figure 4.24.

The experiments suggest that γ-RLM is able to sweep through the search space

between all relevant (results of DaRWR) and all diverse (results of LM) with a

varying γ parameter. Therefore, this parameter can be set depending on the data

and/or diversity requirements of the application.

Figure 4.25 shows the results of γ-RLM with varying γ and κ parameters for k=

20. γ-RLM significantly improves the diversity of top-k results for any κ parameter.
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For γ ≥ 5, average publication year of the results adapts better with the given κ,

returning more recent papers as κ is closer to 1, and more traditional papers otherwise.

Intent-aware experiments

Here we present an evaluation of the intent-oblivious diversification algorithms

against intent-aware measures. This evaluation provides a validation of the techniques

with an external measure, such as group coverage [90] and S-recall [144].

From the citation graph we obtain from different sources, we extract a subgraph

of 545K vertices and 3.1M edges which corresponds to the citation graph of arXiv ar-

ticles. We use this subgraph in intent-aware experiments because the authors of those

articles assign at least one subject (e.g., “High Energy Physics - Phenomenology”,

“Mathematics - Combinatorics”, “Computer Science - Computational Geometry”,

etc.) out of 142 categories. On average 1.52 subjects were assigned to each paper in

the dataset.

The queries are selected with respect to the scenarios explained in [76]. Since our

aim is to evaluate the results based on the coverage of different groups, we randomly

generate 1000 query sets that represent multiple interests. Specifically, for each query

set, up to 10 random papers are selected from the citation graph as different interests

of the user, and a total of 10 to 100 vertices within distance−2 of those interests are

added to the query set. The intent of each query set Q is extracted by collecting the

subjects of each seed node.

One measure we are interested in is the group coverage as a diversity measure [90].

It computes the number of groups covered by the result set and defined on subjects

based on the intended level of granularity. However, this measure omits the actual
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Figure 4.26: Average intent-coverage and S-recall scores for the results of different
diversification algorithms based on subjects. 95% confidence intervals for S-recall are
also provided.

intent of a query, assuming that the intent is given with the subjects of the seed

nodes.

Subtopic recall (S-recall) has been defined as the percentage of relevant subjects

covered by the result set [144]. It has also been redefined as Intent-Coverage [146],

and used in the experiments of [135]. S-recall of a result set S based on the set of

intents of the query I is computed with

S-recall(S, I) =
1

|I|
∑
i∈I

Bi(S), (4.44)

where Bi(S) is a binary variable indicating whether intent i is found in the results.

We give the results of group coverage and S-recall on subjects in Figure 6.8. The

results of AllRandom are included to give a comparison between the results of top-k

relevant set (DaRWR) and ones chosen randomly.

As the group coverage plots show, top-k ranked items of DaRWR do not have

the necessary diversity in the result set, hence, the number of groups that are covered
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by these items are the lowest of all. On the other hand, a randomized method brings

irrelevant items from the search space without considering their relevance to the user

query. The results of all of the diversification algorithms reside between those two

extremes, where DivRank and LM variants cover the most, and GSparse and

GrassHopper cover the least number of groups.

However, S-recall index measures whether a covered group was actually useful or

not. Obviously, AllRandom scores the lowest as it dismisses the actual query (you

may omit the S-recall on topics since there are only 6 groups in this granularity level).

Among the algorithms, LM and k-RLM score the best overall while GrassHopper

have similar S-recall scores for k = 10 and 20, even though LM and k-RLM are much

faster algorithms than GrassHopper (cf. Figure 4.23).

Empirical results

Here, we try to exemplify the effects of diversifying recommendations with k-

RLM method on a real world query39. The recommended and top-100 ranked papers

are manually clustered and labeled into categories, i.e., graph mining (GM), generic

SpMV (Sp), compression (C), multicore (MC), partitioning (P), GPU (GPU), and

eigensolvers (E).

The query is the bibliography of a submitted paper related to SpMV optimization

for emerging architectures, hence a multidisciplinary paper. The query includes a

couple of graph mining papers, and five out of ten relevance-only recommendations

are related to graph mining, where three of them are neighbors. Figure 4.27 shows

39Available at http://theadvisor.osu.edu/csfeedback.php?q=

e302d9fea1f22310cbf64c39a0a20d4e.ris,0.75
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top-k results k-RLM diversified
# paper label paper label
1 Govan09 GM Govan09 GM
2 Kourtis08 C Kourtis08 C
3 Lao10 GM Lao10 GM
4 Abbey10 GM Bradley10 GM
5 Bradley10 GM Hoemmen10 Sp
6 Hoemmen10 Sp Saak64 GPU
7 Knight06 GM Guo10 GPU
8 Davis97 P Lee10 MC
9 Toledo97 Sp Im04 GPU

10 Im00 Sp Kaiser10 MC
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GPU
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E
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Figure 4.27: top-10 and k-RLM diversified results for the given query (a), original
and diversified recommendations are visualized with their categories (b,c). Diversified
results bring about the same number of papers from categories that seed papers belong
to.

that the recommendations with k-RLM diversification improve the set of recom-

mendations by eliminating redundant results and by covering other fields of interest.

Indeed, no results from the multicore and GPU categories were returned before. After

diversification, these two topics are covered. Moreover, the distribution of categories

of k-RLM results resembles the one of the query, while top-k results do not.

4.3.5 Summary

In this work, we addressed the diversification of paper recommendations of theadvisor

service, which ranks papers in the literature with a direction-aware personalized

PageRank algorithm. While giving a survey of diversity methods designed specifically

for random-walk-based rankings, we adapted those methods to our direction-aware

problem, and proposed some new ones based on vertex selection and query refine-

ment. Our experiments with various relevance and diversity measures show that the

proposed γ-RLM algorithm can be preferred for both its efficiency and effectiveness.
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Chapter 5: Exploratory Search and Result Diversification

Provided the tremendous amount of documents the academic community has pub-

lished, we argue that a useful academic recommendation system must have three par-

ticular properties. First, the system should allow the researcher to execute a complex

personalized search. To obtain the highest accuracy, the query should be processed

at a conceptual level. Yet, even the best algorithms may not be able to pin the

important documents precisely, only the user will recognize them. Therefore, the

tool should also allow the user to explore its database in multiple ways to enable

finding and discovering the interesting documents. Furthermore, the system needs to

be efficient to keep the response time short enough to encourage the user for more

complex queries, and since the amount of data will increase, the system must also be

scalable to stay efficient in the future.

We previously evaluated the direction awareness feature of the framework 4.1,

provided the details of various efficient implementations 4.2, and presented prelim-

inary results on result diversification 4.3. The contributions of this chapter can be

summarized as follows:

• we show how relevance feedback and result diversification affect and improve

the service in practice.
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• we show how the different techniques complement each other to provide a pow-

erful document discovery engine.

5.1 Motivation and Contributions

Many academic services have been developed in the past. DBLP is a publicly

available web service that references more than two million papers in computer sci-

ence with complete bibliographic information, venue of publication, and author dis-

ambiguation (proper handling of homonyms) [86]. CiteSeerχ is another web service

which harvests the web for scientific publications in computer and information sci-

ences [87]. The service analyses the documents and automatically extracts the text,

title, authors, and reference list of them. A manual editing for this data (crowdsourc-

ing) is possible to fix the mistakes produced by the automatic system. These data

are used to feed multiple services; citation analysis within CiteSeerχ, expert find-

ing in SeerSeer, collaborator suggestions in CollabSeer [26], acknowledgment search

in AckSeer [64], and automatic paper recommendation based on text similarity in

RefSeer [55]. Also MyCiteSeerχ can provide documents that are within the area of

interest of a given researcher.

Publishers such as ACM, IEEE, Elsevier, and JSTOR have digital libraries that

contain all the articles they published. The documents are properly annotated and

typically contain clean reference information to other documents. These libraries

often have basic article suggestion features. However, the licensing of the data they

employ do not typically allow the third parties to use it for any purpose other than

merely reading them.
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CiteULike is a social tagging application where researchers can manage their bib-

liography, tag them with relevant keywords, and share it publicly with other re-

searchers. Using this information, CiteULike can provide a recommendation based

on the common interests between researchers. A study of its usefulness in bioinfor-

matics can be found in [47]. Services similar to CiteULike help researchers select

and group other papers, letting its users specify different area of interests, but the

recommendation part is commonly very limited.

Google Scholar is a popular and generic academic text-based search engine which

exposes citations and references. It is paired with a social network which allows a

user to track citations to his/her articles. In addition, based on the publication list of

a researcher, the service also provides personalized suggestions as new documents are

indexed. Microsoft Academic Search is another text-based search engine which also

features filtering by areas, topics, co-authorship information, and temporal trends.

Similarly, ArnetMiner [118] is a tool to explore the academic social network. It allows

to search with respect to trends, rankings, and topics of researchers and conferences.

Google Scholar provides personalized suggestions; however, only based on the current

publications of its users. This strategy is also beneficial to stay up-to-date on pub-

lished topics, but when a researcher starts working in a new discipline, such a system

cannot provide relevant information.

All these existing services allow to perform simple queries on the data they host

such as “which documents are popular in a given topic or relevant to a keyword?”,

“which researchers are close to a topic or another researcher?”, or “are there any docu-

ments that match a given set of keywords?”. While writing an article, these questions
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are good starting points, which we refer to as first-level bibliographic search. A rec-

ommender systems employing features like personalization, exploratory search, etc.,

could provide a better literature search. Existing web services generally address the

scalability concerns; however, none of these services are personalized and exploratory

to a satisfactory extent.

In this work, we present the components of the web service called theadvisor

which is developed to improve the literature search process with a personalized and

exploratory search. The service enables exploration of the scientific literature at

three different levels. Result diversification answers the question “what is out there?”,

while relevance feedback allows to guide the search process in a more localized region.

Finally visualization provides a direct interaction with the documents, enabling an

exhaustive exploration in a structured fashion.

5.2 Exploratory Search

In addition to providing personalized and accurate recommendations, giving var-

ious options to researchers to find other related papers, in other words, enabling the

users to do exploratory search on the relevant parts of the database, has its advan-

tages.

In our service, we provide the exploratory search functionality with (a) result

diversification so that researchers may find papers from different aspects of the

query, (b) relevance feedback so that researchers can focus on only the areas that

they are interested in, and (c) visualization so that relevant papers that did not

appear in the top-10 results are visible with their relationships to the seed papers

as well as other recommendations. We give the details of each component and their
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(a) Query papers (b) DaRWR results

Topic 1

Topic 3

Topic 4

Topic 2

Topic 5

Topic 6

(c) Diversified results

NEGATIVE
FEEDBACK

(d) DaRWR results after feedback

Figure 5.1: Exploratory properties on a sample graph. Seed papers in Q are high-
lighted in (a), top-k recommendations of DaRWR are dominated by the papers in
the left part of the graph (b), diversified results with k-RLM introduce papers from
different aspects of the query (c). When positive feedback is given to the papers in
Topics 5 and 6, and negative feedback is given to the rest of the results, the recom-
mendations are more focused on the right part of the graph (d).

experimental results below; however, since the exploratory search is more of a per-

sonalized and subjective matter, it is typically difficult to quantify its effects. We

give an overview of how result diversification, relevance feedback, and visualization

are useful in Figure 5.1.
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5.2.1 Result diversification

Methods such as DaRWR tend to naturally return many recommendations from

the same area of the graph, which leads to a poor coverage of the potential interests of

the users. Diversifying the recommendations refers to the methods that increase the

amount of distinct information one can reach via an automatized search. Diversifica-

tion for the random-walk-based methods attracted attention recently: GrassHop-

per addresses diversified ranking on graphs by vertex selection with absorbing ran-

dom walks [147]. DivRank uses a greedy vertex selection process and updates the

transition matrix at each iteration with respect to the current node ranks by in-

troducing a rich-gets-richer mechanism to the ranking [101]. Dragon approaches

the problem from an optimization point, proposes the goodness measure to combine

relevancy and diversity, and presents a near-optimal algorithm [128].

We can use any of these algorithms in theadvisor since they can easily be en-

hanced with the direction-awareness property; however, the main criteria we need to

consider here is the efficiency, and hence, whether or not the diversification algorithm

can be used in a real-time service. We previously showed that GrassHopper has a

high time complexity and it is not scalable to large graphs [73]. DivRank updates

the full transition matrix at each iteration, hence more iterations are needed for con-

vergence; therefore, the computation cost increases. Dragon, on the other hand,

could not provide a diverse enough set of results.

We argue that finding the vertices which are locally maximum in the graph w.r.t.

their ranks and returning the k most relevant ones will diversify the results and

increase the coverage of citation graph. Once the ranks are computed, the straight-

forward approach for identifying the local maximas is to iterate over each node in the
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graph and check if its rank is greater than all of its neighbors’ with aO(|E|) algorithm.

The drawback of diversifying with local maximas is that for large k’s (i.e., k > 10), the

results of the recommendation algorithm are generally no longer related to the queried

seed papers. Popular papers in unrelated fields can be returned, e.g., a set of well-cited

physics papers for a computer science related query. Although this might improve the

diversity, it hurts the relevancy, hence, the results will no longer be useful to the user.

In order to keep the results within a reasonable relevancy threshold and to di-

versify them at the same time, we relax the algorithm by incrementally getting local

maximas only within the top-γk results and removing the selected vertices from the

subgraph for the next local maxima selection until |S| = k. We refer to this algo-

rithm as parameterized relaxed local maxima (γ-RLM). Note that 1-RLM reduces

to DaRWR. We described the algorithm first in [78].

5.2.2 Relevance feedback

Users of theadvisor are given the option of providing explicit relevance feedback

to the set of recommended papers. The feedbacks can be either positive or negative,

making a recommendation relevant or irrelevant for the query. When the user refines

the query with the relevance feedback, the relevant results are added to Q, and the

irrelevant results are removed from the citation graph with all of their incident edges.

Relevance feedback can also be incorporated well with the diversification feature

explained in the previous section. As the diversified set of results may represent

different sets of papers from different areas of interest, the user of the service can

easily guide the recommendation process towards the fields that she is interested in.
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5.2.3 Data visualization

Representation of the recommendations in a web service is crucial for user expe-

rience. Aside from displaying the full bibliographic entries for the list of suggested

papers, we also visualize the results and their relationships to the references and pa-

pers that are given positive feedback before. The sample graph (see Fig. 5.2) consist

of the seed papers Q (blue), recommendations (green), and top-100 relevant papers

(white). The subgraph is extracted from those vertices and all the edges within this

subset. We then apply a force-directed layout algorithm [127] to improve the repre-

sentation as well as expose the paper clusters.
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Figure 5.2: Visualization of a sample query.

5.3 Experiments

5.3.1 Experiments on diversity

We have given the quantitative analysis of γ-RLM and compared against the listed

diversification methods with various relevance and diversity measures in [73]. Here,

we try to exemplify the effects of reranking the recommendations with a diversification
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(b) DaRWR results with diversifica-
tion

top-k results k-RLM diversified
# paper label paper label
1 Govan09 GM Govan09 GM
2 Kourtis08 C Kourtis08 C
3 Lao10 GM Lao10 GM
4 Abbey10 GM Bradley10 GM
5 Bradley10 GM Hoemmen10 Sp
6 Hoemmen10 Sp Saak64 GPU
7 Knight06 GM Guo10 GPU
8 Davis97 P Lee10 MC
9 Toledo97 Sp Im04 GPU

10 Im00 Sp Kaiser10 MC

(c) Recommendations in each topic

topic query top-k k-RLM
Multicore 2 0 2
GPU 2 0 3
Eigensolver 1 0 0
Graph Mining 3 5 3
Compression 1 1 1
Generic SpMV 1 3 1
Partitioning 1 1 0

(d) Number of papers in each topic re-
turned by the algorithms

Figure 5.3: Comparison of the recommendations of DaRWR and diversified DaRWR
for a given query related to SpMV optimization for emerging architectures. The
graph is manually annotated with topical information. Without diversification, five
out of ten recommendations are related to graph mining, where three of them are
neighbors. Diversification allows to cover more topics by eliminating redundant results
and including items from uncovered topics.

method on a real world query40. The recommendations are diversified and visualized

within theadvisor, and we manually clustered and labeled the citation subgraph of

Q and the top-100 ranked papers in Figure 5.3.

40The query is available at http://theadvisor.osu.edu/csfeedback.php?q=

e302d9fea1f22310cbf64c39a0a20d4e.ris,0.75
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The query is the bibliography of a submitted paper related to SpMV optimization

for emerging architectures, hence a multidisciplinary paper. The query includes a

couple of graph mining papers, and five out of ten relevance-only recommendations

are related to graph mining (Fig. 5.3(a)), where three of them are neighbors. The

recommendations with k-RLM diversification (Fig. 5.3(b)) improve the set of recom-

mendations by eliminating redundant results and by covering other fields of interest.

Indeed, no results from the Multicore and GPU categories were returned before. After

diversification, these two topics are now covered. Notice that a recommendation from

the Partitioning category was removed by the diversification algorithm because one

of its neighbors from the Compression with a higher rank have already been included.

In case the user is interested in finding more GPU related papers, she may inves-

tigate other papers within the top-100 relevant set using the visualization, or may

give a positive feedback on the current recommendations on GPU and refine the

search without diversification. We believe that diversification is an essential part

of the paper recommendation process, especially when the query set is composed of

multidisciplinary papers and/or papers from separate disciplines.

5.3.2 Experiments on relevance feedback

Relevance feedback is an important part of the recommendation system since

users may give positive and negative feedbacks on the results in order to reach to

desired papers or topics. In this test, 2500 source papers are randomly selected. For

each source paper s, the graph is pruned by removing the papers published after s.

Then, a target paper t is selected from the pruned graph, such that it is the most

relevant paper at distance 3 from the source (i.e., t = argmaxt∈V pt, s.t. d(s, t) = 3
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and year[t]≤year[s]). Assuming that a user can only display 10 results at a time, we

measure the number of pages that the user has to go through until she reaches t. We

compare the feedback mechanism with the following user behaviors:

No feedback: There is no feedback mechanism; therefore, user should keep going to

the next page until she finds the target paper.

Only positive feedback (+RF): Relevant results are added to Q in the next step,

irrelevant results should not be displayed again.

Only negative feedback (-RF): Irrelevant results are removed from the graph,

relevant results are kept but will not be displayed again.

Both positive and negative (±RF): Results are labeled as either relevant to be

added to Q or irrelevant to be removed from the graph.

 0
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Ta
u

Ratio

No RF
Pos RF
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Pos+Neg RF

Q −RF +RF ±RF
1 88.23 17.64 17.64
2 66.66 33.33 44.44
3 36.84 10.52 13.15
4 96.66 36.66 33.33
5 78.94 31.57 42.10
6 55 35 30
7 30.43 34.78 26
8 100 15 15
9 70 30 30
10 22.22 103.7 40.74

· · ·
AVG 66.99 19.61 22.85

Figure 5.4: Relevance feedback experiments: performance profiles (left) and sample
of the number of pages one has to go through expressed as a percentage of the number
of pages without using any feedback (right), e.g., using only positive feedback allows
to reduce the number of pages by 80.39% on average.

Figure 5.4-(left) presents the performance profile of the experiments. A feedback

policy passing through point (ratio, τ) achieves a result at worse ratio times the
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number of pages of the best policy in a fraction τ of the case. Figure 5.4-(right)

presents the percentage of pages needed to find a target paper at distance−3 with

positive and/or negative relevance feedback compared to not using feedback at all.

Using negative feedback only reduces the number of pages one has to go through by

30.01% in average and using positive feedback allows to reduce the number of pages by

80.39% on average. Using both negative and positive feedback reduces the number

of pages by 77.15% on average. The results show that the feedback mechanism,

especially positive feedback, allows to speedup the process of searching for specific

references.

5.4 Summary

In this work, we identify the properties that an academic recommendation service

should provide to its users as personalized search, exploration of the data, and efficient

and scalable methods. We argue that the existing academic services lack some of

the mentioned properties. Personalization is achieved by the user indicating a set

of relevant documents. Exploration is achieved by three techniques leading to an

overall description of the area (diversification), guiding technique to reinforce interest

(relevance feedback) and manual discovery (visualization). All the features of the

system are based on sound algorithmic decisions and are shown to be very beneficial

in practice.
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Chapter 6: Graph Diversity and Common Pitfalls in its

Evaluation

Algorithms developed for graph-based recommendation are very popular among

web services; for instance, Amazon uses co-purchasing information to recommend

products to its customers, IMDB recommends movies to its visitors based on the

information such as director, cast, and ratings, and Google uses the web-graph and

the user histories for personalized web search. The recommendations are usually

made based on user preferences, either explicitly expressed or based on what she has

been looking at recently. These preferences are used as the objects of known interest

to seed the algorithms.

One of the common problems of popular recommendation algorithms is the pollu-

tion of top recommendations with many similar items, i.e., redundancy. It is typically

not interesting to be recommended slight variations of the same product if you have a

wide interest. The redundancy problem is solved via result diversification, which has

gained a lot of attention in many fields recently [4, 37, 69, 90, 101, 111, 128, 131]. Di-

versification usually refers to the process of returning a set of items which are related

to the query, but also dissimilar among each other. The problem of recommend-

ing a diversified set is inherently qualitative and is evaluated differently in various

contexts [18, 24, 30, 144].
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Most diversification studies in the literature rely on various assumptions, e.g.,

objects and queries are categorized beforehand [135], or there is a known distribution

that specifies the probability of a given query belonging to some categories [4]. In

the context of information retrieval or web search, since the search queries are often

ambiguous or multifaceted, a query should represent the intent of an average user

with a probability distribution [135]. Intent-aware methods in the literature aim to

cover various relevant categories with one or more objects, or as TREC defines its

diversity task, “documents are judged on the basis of the subtopics, based on whether

or not a document satisfies the information need associated with that subtopic” [29].

In this work, we assume that the graph itself is the only information we have, and

no categories or intents are available. We are interested in providing recommendations

based on a set of objects of interest. The recommended items should be related to

the user’s interests while being dissimilar to each other. This particular problem has

attracted a lot of attention recently, and many algorithms and evaluations have been

proposed [27, 37, 74, 90, 101, 128, 147, 146].

Evaluation of algorithms’ quality is one interest of the paper. Usually, algorithms

are evaluated by expressing the problem as a bicriteria optimization problem. The

first criteria is related to relevancy, e.g., the sum of the personalized PageRank scores,

and the second is related to diversity, e.g., the density or the expansion ratio of

the subgraph formed by the recommended set. These two criteria are either aggre-

gated (often with a simple linear aggregation) or they are considered simultaneously

with Pareto dominance (where the solutions are in the relevancy-diversity objective

space). As the first contribution, we show that such an evaluation is inappropriate.

Indeed, we design query-oblivious algorithms for the two popular combinations of
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objectives that return most of the recommendations without considering the user’s

interests, yet, perform the best on these commonly used measures.

We argue that a result diversification algorithm should be evaluated under a mea-

sure which tightly integrates the query in its value. The goodness measure proposed

in [128] has such a property; however, it is shown to be dominated by the relevance.

We propose a new measure called expanded relevance (exprel`) which computes the

coverage of the relevant part of the graph. We show that the query-oblivious algo-

rithms cannot optimize exprel`.

We also investigate various quality indices by computing their pairwise correla-

tions. This highlights that the goodness measure is highly correlated with the sum of

ranking scores. That is the algorithms that perform well on goodness produce results

sets which are not much different from top-k relevant set. The exprel` measure we

propose appears to have no high correlation with other measures.

To optimize exprel` of the result set, we propose a greedy algorithm BestCoverage.

Because of the submodular properties of exprel`, BestCoverage is a (1−1/e)-approximation

algorithm with complexity O(kn∆`), where k is the number of recommended items, n

is the number of vertices in the graph, and ∆ is the maximum degree. We propose a

relaxation of BestCoverage with complexity O(kδ̄`∆`), where δ̄ is the average degree

of the graph. We experimentally show that the relaxation carries no significant harm

to the expanded relevance of the results.

184



6.1 Background

6.1.1 Problem definition

We target the problem of diverse recommendation on graphs assuming that the

user has a history or specified interests in some of the items. Therefore, the objective

is to return a set of items which extend those interests.

Let G = (V,E) be an undirected graph where V = {v1, . . . , vn} is the vertex set

and E is the edge set. Given a set of m seed nodes Q = {q1, . . . , qm} s.t. Q ⊆ V ,

and a parameter k, return top-k items which are relevant to the ones in Q. With

diversity in mind, we want to recommend items not only relevant to Q, but also

covering different aspects of the query set

6.1.2 PageRank and personalized PageRank

We define a random walk on G arising from following the edges (links) with equal

probability and a random restart at an arbitrary vertex with (1 − d) teleportation

probability. The probability distribution over the states follows the discrete time

evolution equation:

pt+1 = P pt, (6.1)

where pt is the vector of probabilities of being on a certain state at iteration t, and

P is the transition matrix defined as:

P(u, v) =

{
(1− d) 1

n
+ d 1

δ(v)
, if (u, v) ∈ E

(1− d) 1
n
, otherwise,

(6.2)

where δ(v) is the degree of the vertex v ∈ V . If the network is ergodic (i.e., irreducible

and non-periodic), (6.1) converges to a stationary distribution π = Pπ after a number
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of iterations. And the final distribution π gives the PageRank scores [15] of the nodes

based on centrality.

In our problem, a set of nodes Q was given as a query, and we want the random

walks to teleport to only those given nodes. Let us define a prior distribution p∗ such

that

p∗(v) =

{
1/m, if v ∈ Q
0, otherwise.

(6.3)

If we substitute the (1/n)s in (6.2) with p∗, we get a variant of PageRank, which is

known as personalized PageRank (PPR) or topic-sensitive PageRank [54]. PPR scores

can be used as the relevance scores of the items in the graph. Note that the rank of

each seed node is reset after the system reaches to a steady state, i.e., ∀q ∈ Q, πq ← 0,

since the objective is to extend Q with the results.

PPR is preferred as the scoring function in our discussions because (i) some of the

methods in the experiments are variants of PPR which compute relevant but diverse

set of results, (ii) some measures and objective functions are defined on the stationary

distribution of PPR, and (iii) alternative scoring functions and probability distribu-

tions on graph produce similar results to PPR. On the other hand, the discussions

on evaluations and some diversification techniques are independent of the preferred

scoring function, hence we believe that the discussions will still interest the majority

of the readers.

6.1.3 Result diversification on graphs

We classify the diversification methods for the recommendation problem based on

whether the algorithm needs to rank the items only once or multiple times.
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Diversification by query refinement. This set of algorithms rank the items k

times to select the results one by one, and refine the search at each step.

GrassHopper [147] is a well-known diversification algorithm which ranks the

graph k times by turning the highest-ranked vertex into a sink node at each itera-

tion. Since the probabilities will be collected by the sink nodes when the random

walk converges, the algorithm estimates the ranks with the number of visits to each

node before convergence. GrassHopper uses matrix inversion to find the expected

number of visits; however, inverting a sparse matrix makes it dense, which is not

practical for the large and sparse graphs we are interested in. Therefore, we estimate

the number of visits by iteratively computing the cumulative ranks of the nodes with

PPR.

GSparse [74] employs an incremental ranking approach similar to GrassHop-

per, but the algorithm disconnects the selected node from the graph instead of con-

verting it into a sink node. After executing the ranking function, the graph is sparsi-

fied for the next iteration by removing all the edges of the highest ranked node. This

way, the graph becomes less dense around the selected nodes, hence, the remaining

nodes at these regions will attract less visits during the random walk. The process is

repeated until k nodes are selected.

Recently, manifold ranking has become an alternative to personalized PageR-

ank and several diversification methods were proposed based on the idea of turning

highly ranked nodes into sinks [27, 37, 146]. Aside from the ranking strategy, manifold

ranking with sink points is quite similar to GrassHopper when the probabilities are

estimated with cumulative scores. Since the manifold ranking is a different ranking of

the graph, we carry out our experiments based only on PPR by leaving the discussion
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of using manifold ranking instead of PPR open for the time being.

Diversification by vertex selection. The following algorithms run the ranking

function once, then carefully select a number of vertices to find a diverse result set.

DivRank [101] adjusts the transition matrix based on the number of visits to

the vertices so far using a variant of random walks, called vertex-reinforced random

walks (VRRW) [107]. It assumes that there is always an organic link for all the nodes

returning back to the node itself which is followed with probability (1− α):

p0(u, v) =

{
αw(u,v)

δ(u)
, if u 6= v

1− α, otherwise,
(6.4)

where w(u, v) is equal to 1 for (u, v) ∈ E ′, and 0 otherwise. The transition matrix Pt

at iteration t is computed with

Pt(u, v) = (1− d) p∗(v) + d
p0(u, v) ηt(v)∑
z∈V p0(u, z) ηt(z)

, (6.5)

where p∗(v) is given in (6.3), and ηt(v) is the number of visits of vertex v up to

iteration t. It ensures that the highly ranked nodes collect more value over the

iterations, resulting in the so called rich-gets-richer mechanism. In each iteration of

VRRW, the transition probabilities from a vertex u to its neighbors are adjusted by

the number of times they are visited up to that iteration t. Therefore, u gives a high

portion of its rank to the frequently visited neighbors. Since the tracking of ηt(.) is

nontrivial, the authors propose to estimate it with cumulative ranks (CDivRank),

i.e., the sum of the scores upto iteration t, or, since the ranks will converge after

sufficient number of iterations, with pointwise ranks (PDivRank), i.e., the last score

at iteration t− 1.
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A recently proposed algorithm, Dragon [128], employs a greedy heuristic to find

a near-optimal result set that optimizes the goodness measure, which punishes the

score when two neighbors are included in the results (see (6.15)). We will investigate

this measure more in the upcoming section.

Frequently visited nodes tend to increase the ranks of their neighbors because of

the smoothing process of random walks [101]. Based on this observation, algorithms

using local maxima have been proposed. The Relaxed Local Maxima algorithm (k-

RLM) [74] incrementally includes each local maxima within top-k2 results to S until

|S| = k by removing it from the subgraph for the next iteration.

6.2 Measures and Evaluation

6.2.1 Classical relevance and diversity measures

Let us first review some classical measures for computing the relevance and diver-

sity of the results with respect to the query. The measures are important since either

they are typically used as –or a part of– the objective function of the diversification

method, or the results are evaluated based on those measures.

Normalized relevance: The relevancy score of a set can be computed by comparing

the original ranking scores of the resulting set with the top-k ranking list [128], defined

as

rel(S) =

∑
v∈S πv∑k
i=1 π̂i

, (6.6)

where π̂ is the sorted ranks in non-increasing order.41 Normalization with
∑k

i=1 π̂i is

preferred over
∑

v∈S πv since the distribution of scores in a random walk depends on

41π̂ does not denote estimated or predicted relevance scores.
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the graph size, query, connectivity, etc., and normalized scores are comparable among

different settings.

Difference ratio: A diversified result set is expected to be somewhat different than

the top-k relevant set. Because the highly ranked nodes increase the ranks of their

neighbors [101], the top-k results, recommended by the original PPR, is not diverse

enough as shown in [111] and in our experiments. Nevertheless, the original result set

has the utmost relevancy. This fact can mislead the evaluation of the experimental

results. Therefore, we decided to measure the difference of each result set from the

set of original top-k nodes. Given Ŝ to be the top-k relevant set, the difference ratio

is computed with

diff(S, Ŝ) = 1− |S ∩ Ŝ|
|S|

. (6.7)

nDCG: We use normalized discounted cumulative gain (nDCG), for measuring the

relevancy as well as the ordering of the results. It is defined as

nDCGk =
πs1 +

∑k
i=2

πsi
log2 i

π̂1 +
∑k

i=2
π̂i

log2 i

, (6.8)

where π is the relevancy vector (e.g., stationary distribution of a random walk), π̂ is

the sorted π in non-increasing order, and si ∈ S is the ith point in result set S.

`-step graph density: A variant of graph density measure is the `-step graph

density [128], which takes the effect of in-direct neighbors into account. It is computed

with

dens`(S) =

∑
u,v∈S,u6=v d`(u, v)

|S| × (|S| − 1)
, (6.9)

where d`(u, v) = 1 when v is reachable from u within ` steps, i.e., d(u, v) ≤ `, and 0

otherwise. The inverse of dens`(S) is used for the evaluation of diversity in [101].
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`-expansion ratio: As an alternative to density, expansion ratio and its variant `-

expansion ratio [90] measure the coverage of the graph by the solution set, computed

with:

σ`(S) =
|N`(S)|
n

, (6.10)

where the expansion set with 1-distance neighbors is defined as N(S) = S ∪ {v ∈

(V − S) : ∃u ∈ S, (u, v) ∈ E}, and the `-step expansion set is defined in [90] as:

N`(S) = S ∪ {v ∈ (V − S) : ∃u ∈ S, d(u, v) ≤ `}. (6.11)

Note that the intent-aware measures, such as intent-aware expected reciprocal

rank (ERR-IA) [24], α-normalized discounted cumulative gain (α-nDCG@k) [30],

intent-aware mean average precision (MAP-IA) [4], are not included to the discus-

sions, but they are important measures for evaluating the diversity of the results

when data and queries have some already known categorical labels. Our problem

has no assumptions of a known distribution that specifies the probability of an item

belonging to a category.

6.2.2 Bicriteria optimization measures

Maximum Marginal Relevance (MMR) [18] is the most popular diversification

method that optimizes a bicriteria objective, marginal relevance, which is a linear

combination of independently measured relevance and novelty. The method greedily

and implicitly optimizes the following objective assuming that the similarity of all

items to the query items are already computed in π:

fMMR(S) = (1− λ)
∑
v∈S

πv − λ
∑
u∈S

max
v∈S
u6=v

sim(u, v), (6.12)
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where λ is the importance of relevance over novelty and sim is a similarity metric.

The problem with (6.12) is that two different measures are aggregated without taking

their compatibility into account.

The same premise is also valid for any type of linear aggregation of a relevance

and a diversity measure. For example, [90] tries to optimize the following diversified

ranking measure:

fL(S) =
∑
v∈S

πv + λ
|N(S)|
n

, (6.13)

where λ is the tradeoff between relevance and diversity, and the diversity of the result

set is measured with the expansion ratio. Similarly in [89], relevance part is scaled

with (1− λ).

Other bicriteria objectives include max-sum diversification, which reduces to Max-

SumDispersion problem, max-min diversification, which reduces to MaxMinDis-

persion problem, etc. For example, k-similar diversification set problem [131] is

defined based on MaxSumDispersion as:

fMSD(S) = (k − 1)(1− λ)
∑
v∈S

πv + 2λ
∑
u∈S

∑
v∈S
u6=v

div(u, v), (6.14)

where div(u, v) can be selected as a weighted similarity, tf/idf cosine similarity, or

the Euclidean distance depending on the problem. We refer the reader to [46] for

more information on objectives and distance functions.

6.2.3 Bicriteria optimization is not the answer

We argue that bicriteria optimization is inappropriate, and hence, the diversifi-

cation methods that seem to optimize both criteria are problematic. Let us return

back to our original problem: the items in a graph structure are ranked based on a
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given query and a ranking method (e.g., PPR), and our aim is to rerank those items

so that we can include more results from different aspects of the query and reduce

redundancy of top-k relevant set.

Suppose that we work on the web graph and we want to diversify the results of a

search engine which displays k = 10 results to the user. Do you think the quality of

the top-k list would improve if we replace some results from the end of the list with

random web pages?

We design two query-oblivious algorithms for the two popular combinations of

objectives, which are monotonous (e.g., linear or quadratic) aggregations of max-sum

relevance and max-sum diversity (graph density dens or expansion ratio σ) objectives.

The algorithms will return some of the results without considering the user’s interests,

yet, will perform the best on the following commonly used measures:

• top-%+random: returns a given percentage of the results (e.g., 50%, 75%,

etc.) from top-k, and the rest randomly from the search space.

• top-%+greedy-σ2: returns a given percentage of the results (e.g., 50%, 75%,

etc.) from top-k, and try to maximize σ2 with the rest of the results without

taking the query into account.

To prove our point, we compute the normalized relevance (rel) and selected di-

versity measure (dens2 and σ2) of the results for the diversification methods in the

literature and for the query-oblivious algorithms.42 We fit a multi-variate Gaussian

on top of the results to show the mean and moments of the distribution when two

42Figure 6.1 gives only the results for amazon0601 dataset using scenario 3 queries and k = 20.
Comparisons of query-oblivious methods on given bicriteria measures and exprel2 for other datasets
and query types are provided in: http://bmi.osu.edu/hpc/data/Kucuktunc13WWW/randoms.pdf
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Figure 6.1: Evaluation of top-%+random (red) and top-%+greedy-σ2 (blue) methods
versus other algorithms (gray) based on selected relevance/diversity measure pairs and
combined exprel2 measure. The other algorithms include GrassHopper, DivRank,
Dragon, k-RLM, GSparse, and BestCoverage, but they are not highlighted here
since we do not want to prematurely compare those against each other.

objectives are considered simultaneously. A result which further minimizes dens2 and

maximizes rel and σ2 is favorable and better. This is shown with an arrow in the

Figs. 6.1(a) and 6.1(b).

Figure 6.1(a) shows the results of top-%+random as well as other algorithms

with respect to rel vs. dens2 evaluation. Figure 6.1(b) similarly shows the results of

top-%+greedy-σ2 as well as other algorithms with respect to rel vs. σ2 evaluation.

Here, query-oblivious methods seem to recommend the best result sets when a bicri-

teria evaluation is used. Yet, we know that those algorithms are designed to trick the

evaluation, as well as produce useless results in user’s point of view.

Using only the first half of top-k results gives a normalized relevance score greater

than or equal to 0.5 since the ranks are sorted in non-increasing order. Further-

more, the ranks has a power-law distribution that makes rel much higher than 0.5.

Therefore, the relevance objective is mostly satisfied.
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We further argue that no matter which relevance and diversity measures are se-

lected, there always exists a query-oblivious algorithm which optimizes both measures

in a meaningless way, useless in practice but looks great on the paper. This is the

problem of evaluating result diversification as a bicriteria optimization problem with

a relevance measure that ignores diversity, and a diversity measure that

ignores relevancy.

6.2.4 Combined measures

As a result of our experiments on bicriteria optimization, we argue that we need a

combined measure that tightly integrates both relevance and diversity aspects of the

result set. It is reasonable to design the combined measure based on the query, the

rankings, and the graph structure we already have.

The goodness measure [128] is a step towards a meaningful combined measure. It

penalizes the score when two results share an edge, meaning that they are neighbors

and they possibly increase their ranks by feeding each other during the random walk.

The measure is computed with

fG(S) = 2
∑
i∈S

πi − d
∑
i,j∈S

A(j, i)πj − (1−d)
∑
j∈S

πj
∑
i∈S

p∗(i), (6.15)

where A is the row-normalized adjacency matrix of the graph. However, we will

show in Section 6.2.5 that goodness is highly dominated by relevance, which reflects

negatively on the results of Dragon in the experiments.

We present a combined measure of the `-step expansion ratio (σ2) and relevancy

scores (rel), which are two popular diversity and relevance measures in the literature,

in order to quantify the relevant-part coverage of the graph:
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`-step expanded relevance:

exprel`(S) =
∑

v∈N`(S)

πv (6.16)

where N`(S) is the `-step expansion set of the result set S, and π is the PPR scores

of the items in the graph.

This new measure explicitly evaluates the diversity of the results in terms of

coverage with the given set. In other words, when two results are close to each other

in the graph, their expansion sets intersect narrowing the covered part of the search

space. Therefore, the items having separate expansion sets will increase the coverage.

However, coverage is not the only aspect of exprel`. The proposed measure also takes

the ranking scores into account, and hence the quality of the covered part.

The effect of each result is limited with the given ` parameter, i.e., a result covers

only its neighbors in the graph if ` = 1, or neighbors of neighbors if ` = 2. Higher

values of ` are generally not preferred since the expansion set tends to cover most of

the graph in those cases.

An important property of exprel` measure is that query-oblivious algorithms can-

not optimize it. Because, the highest ranked items are mostly not diverse enough,

and the rest of the results (randomly selected independent of the query) will not con-

tribute much to the measure. Figure 6.1(c) shows that neither top-%+random (red)

nor top-%+greedy-σ2 (blue) can optimize the measure while the diversification algo-

rithms (gray) can score higher. This proves the validity of the measure for diversifi-

cation.
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6.2.5 Correlations of the measures

We investigate the mentioned relevance, diversity, and combined measures by

computing their pairwise correlations based on the results of the algorithms given

in Section 6.1.3 as well as the query-oblivious top-%+random methods given in the

previous section. Table 6.1 shows the correlations of 10 measures as scatter plots as

well as their correlation scores.43

For the relevance measures, rel is highly correlated with nDCG although the latter

considers the order of the results. rel is also anti-correlated with diff , meaning that

as the ratio of results other than top-k start to increase, the normalized relevance

decreases accordingly.

For the graph diversity measures, `-step expansion ratios (σ1 and σ2) are highly

correlated among each other. On the other hand, graph density-based measures

(dens1 and dens2) do not seem to have any high correlation with other measures.

Among the combined measures, goodness is highly correlated with rel. This high-

lights that the goodness measure is dominated by the sum of ranking scores, meaning

that algorithms that perform better on goodness do not return results that are much

different from the top-k results of PPR.

The proposed exprel` measure, on the other hand, appears to have no high correla-

tion with any of the other relevance or diversity measures, proving that it is something

different than the already known measures. Although the expanded relevance is based

on both rel and expansion ratio (σ), very low correlation is observed in the results.

43Table 6.1 shows only the measure correlations on amazon0601 dataset and with k = 20. The
results are consistent across various datasets, scenarios, and k values. A complete comparison set is
provided in: http://bmi.osu.edu/hpc/data/Kucuktunc13WWW/corr.pdf
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Table 6.1: Correlations of the different relevance, diversity, and combined measures.
Pearson correlation scores are given on the lower triangle of the matrix. High corre-
lations are highlighted.
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6.3 Best Coverage Method

Our strategy so far was to review the attempts to find a good objective function

for the result diversification problem on graphs. We have shown that a bicriteria

optimization of relevance and diversity can be tricked, and a combined measure should

be constructed carefully. The proposed exprel` measure seems to cover both aspects

of the intended objective, yet cannot be optimized by the query-oblivious algorithms.
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We argue that this novel measure can be naturally used as an objective function of a

diversification algorithm.

6.3.1 Problem formulation and complexity

Given a graph G = (V,E), a vector of ranking scores π (stationary distribution

of PPR scores in our case) computed based on the query set Q, and the number of

required results k, our objective is to maximize the expanded relevance (exprel`) of

the result set S:

S = argmax
S′⊆V
|S′|=k

exprel`(S
′) = argmax

S′⊆V
|S′|=k

∑
v∈N`(S′)

πv, (6.17)

whereN`(S
′) is the `-step expansion set. We refer to this problem as exprel`-diversified

top-k ranking (DTR`).

However, it is not hard to see that the objective of finding a subset of k elements

that maximizes the expanded relevance is NP-hard. Assuming the graph G and the

ranking scores π are arbitrary, DTR` is a generalization of the weighted maximum

coverage problem (WMCP) which is NP-Complete [57]. WMCP is expressed as a set

O of objects oi with a value ωi and z sets of objects rj ⊆ O, R = {r1, r2, . . . , rz}.

The problem is to select a subset of R, P ⊆ R such that |P | = x which maximizes∑
oi∈{rj :rj∈P} ωi. The key of the reduction for ` = 1 is to construct an instance of

DTR` with a bipartite graph G = (V = R ∪ O,E) where (rj, oi) ∈ E iff oi ∈ rj. We

set πrj = 0, πoi = ωi and k = x. The solutions of DTR` are dominated by sets S

where all the vertices are in R. Indeed, since πrj = 0,∀rj there is no advantage in

selecting a vertex in O. The rest of the reduction is obvious for ` = 1. For other

values of `, the reduction is similar, except each edge of the bipartite graph is replaced

in a path of ` edges.
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Note that the proposed objective in (6.17) is independent of ordering since the

function is defined over an unordered set. This is usually reasonable because there is

an assumption that users will consider all k results [4, 90, 128]. In practice, different

users may stop at different number of results, hence, several DCG-based metrics are

commonly used to compute the importance of returning results in an ideal ordering.

The near-optimal solutions that we will present in the following section can still

output an ordered set of results based on the marginal utility of each selected item

at the moment of its inclusion.

6.3.2 Greedy solution: BestCoverage

Although the optimal solution of the proposed objective function (see (6.17)) is

NP-hard, we will show that a greedy solution that selects the item with the highest

marginal utility at each step is the best possible polynomial time approximation for

the problem.

Let us define the marginal utility for a given vertex v and result set S as g(v, S),

such that g(v, ∅) = exprel`({v}) before any results are selected, and g(v, S) =
∑

v′∈V ′ πv′

where V ′ = N`({v}) − N`(S) represents the `-step expansion set of vertex v with-

out the items that have already been covered by another result. In other words,

g(v, S) is the increase on the exprel` measure if v is included to the result set, i.e.,

exprel`(S ∪ {v}) = exprel`(S) + g(v, S).

Algorithm 15 incrementally selects the item with the highest marginal utility in

each step, then includes it to the result set S. This way, the items that contribute the

most to the expanded relevance of the final results are greedily selected as a solution
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Algorithm 15: BestCoverage

Input: k,G, π, `
Output: a list of recommendations S
S = ∅
while |S| < k do

v∗ ← argmaxv g(v, S)
S ← S ∪ {v∗}

return S

to the given optimization problem. In order to show that the greedy algorithm solves

the problem quite well, we first prove that the exprel` is a submodular function:

Definition 6.3.1. (Submodularity) Given a finite set V , a set function f : 2V →

R is submodular if and only if for all subsets S and T such that S ⊆ T ⊆ V , and

j ∈ V \ T , f(S ∪ {j})− f(S) ≥ f(T ∪ {j})− f(T ).

Lemma 6.3.2. exprel` is a submodular function.

The proof of the lemma follows directly from the definitions of submodularity and

exprel`. Greedy algorithms are known to generate good solutions when maximizing

submodular functions with a cardinality constraint and were used in [4, 90].

Theorem 6.3.3. [102] For a submodular set function f , let S∗ be the optimal set of

k elements that maximizes f(S), and S ′ be the k-element set constructed greedily by

selecting an element one at a time that gives the largest marginal increase to f . Then

f(S ′) ≥ (1− 1/e)f(S∗).

Corollary 6.3.4. BestCoverage is an (1 − 1/e)-approximation algorithm for the

exprel`-diversified top-k ranking problem.
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6.3.3 Analysis and relaxation of the algorithm

BestCoverage (BC) is a (1−1/e)-approximation for maximizing exprel` with com-

plexity O(kn∆`) where n is the number of vertices in the graph, k is the number of

recommended objects, and ∆ is the maximum degree of the graph.

Obviously, the implementation in Algorithm 15 can be improved by storing the

marginal utility for every vertex at the expense of O(n) space, and updating only the

vertices that the inclusion of v∗ to S would affect. However, for ` = 2, the number

of vertices to be updated is |N4({v∗})|, which is O(∆4) in the worst case. Initializing

the marginal utility incurs a cost of O(n∆`). Once a vertex is added to set S, the

impact of its distance ` neighbors must be adjusted. For a given vertex, adjusting its

impact costs O(∆`). For each iteration of the algorithm the impact of at most ∆`

neighbors need to be adjusted. Though, each vertex adjusts its impact only once, so

there are O(min{n, k∆`}) adjustments. Finally, selecting the vertex with maximal

marginal utility requires O(n) operations44 per iteration. The overall complexity of

the algorithm is O(n∆` + min{n, k∆`}∆` + kn).

With this optimization, most of the time is spent on initializing the marginal

utility. We experimentally found that the returned results are chosen from top-k′

results of PPR ranks, where k′ is proportional to k and the average degree of the graph.

We propose a relaxation of BestCoverage which only considers including in the result

set the top-kδ̄` highest ranked vertices solely based on the relevance scores where δ̄

is the average degree of the graph. All the vertices of the graph still contributes to

marginal utility. The complexity of the relaxed version drops to O(min{n, k∆`}∆` +

44It might appear that using a fibonnacci heap should allow to reach a better complexity, but we
require the extract-max and decrease-key operations which are incompatible.
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Algorithm 16: BestCoverage (relaxed)

Input: k,G, π, `
Output: a list of recommendations S
S = ∅
Sort(V ) w.r.t πi non-increasing

S1← V [1..k′], i.e., top-k′ vertices where k′ = kδ̄`

∀v ∈ S1, g(v)← g(v, ∅)
∀v ∈ S1, c(v)← Uncovered
while |S| < k do

v∗ ← argmaxv∈S1 g(v)
S ← S ∪ {v∗}
S2← N`({v∗})
for each v′ ∈ S2 do

if c(v′) = Uncovered then
S3← N`({v′})
∀u ∈ S3, g(u)← g(u)− πv′
c(v′)← Covered

return S

kmin{n, kδ̄`}) since the cost of the computation of the initial marginal utility is now

asymptotically dominated by the cost of adjusting them. Algorithm 16 gives the

relaxed BestCoverage algorithm with all mentioned improvements. The impact of

the relaxation on the quality of the solution will be discussed in Section 6.4.3.

6.4 Experiments

6.4.1 Datasets

In the experiments we use one graph instance for each targeted application area,

i.e., product recommendation on shopping websites, collaborator and patent recom-

mendation in academia, friend recommendation on social networks, and personalized

web search. The graphs are publicly available at Stanford Large Network Dataset
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Table 6.2: Properties of the graphs used in experiments.

Dataset |V | |E| δ̄ D D90% CC

amazon0601 403.3K 3.3M 16.8 21 7.6 0.42
ca-AstroPh 18.7K 396.1K 42.2 14 5.1 0.63
cit-Patents 3.7M 16.5M 8.7 22 9.4 0.09
soc-LiveJournal1 4.8M 68.9M 28.4 18 6.5 0.31
web-Google 875.7K 5.1M 11.6 22 8.1 0.60

Collection45. In summary, amazon0601 is the Amazon product co-purchasing net-

work collected on June 2003. ca-AstroPh is the collaboration network between

authors of the papers submitted to arXiv astrophysics category. cit-Patents is

the citation network between U.S. patents granted between 1975 and 1999. soc-

LiveJournal1 is the graph of LiveJournal social network, and web-Google is the

web graph released in 2002 by Google.

The mentioned graphs are re-labeled, converted into undirected graphs. The prop-

erties of the graphs are given in Table 6.2. Note that δ̄ is the average degree of the

graph, D is the diameter of the graph, i.e., maximum undirected shortest path length,

D90% is the 90-percentile effective diameter, and CC is the average clustering coeffi-

cient.

6.4.2 Scenarios and query generation

We generate the queries for the experiments based on three different real-world

scenarios:

Scenario 1: A random vertex in the graph is selected as the query. This scenario

represents the case where the system does not have any information on the user. For

45Available at: http://snap.stanford.edu/data/index.html
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product recommendation, the user can be visiting a product page without signing in

to the system. For academic recommendation tasks, a professor can be looking for

collaborators.

Scenario 2: A random vertex v along with 10–100 vertices within two distance to v

are selected as a query. In this scenario, v and the selected vertices represent an area

of interest. For example, the user can be searching for a product within a category,

or interested in an academic field. In a social network, the friend list of a person can

be used as the query for friend suggestion.

Scenario 3: 2 to 10 random vertices are selected as different interests of the user,

and a total of 10 to 100 vertices around those interests are added to the query set.

Multiple areas of interest is the most common use case for these applications where

users are registered to the system and already have a search or purchase history.

For each dataset, 750 queries were generated, where the average number of the

seed nodes varies between 1 and 50 for the scenarios 1 and 3, respectively. In total

3,750 query sets representing different real-world cases were used in the experiments.

6.4.3 Results

We experiment with the algorithms given in Section 6.1.3, the datasets described

in Section 6.4.1, and the queries defined in Section 6.4.2. For the methods that use the

ranking scores of PPR, we fix d = 0.9 and the number of PPR iterations to 20 in order

to be consistent between different queries. For the VRRW computation of DivRank

methods, we set α = 0.25 and the number of iterations to 50 since VRRW usually

takes more iterations to converge. All ranking functions are implemented efficiently

with sparse matrix-dense vector multiplication (SpMxV) operations.
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Figure 6.2: Normalized relevance (rel) and different ratio (diff ) scores with varying
k. Dragon and GSparse return results around 70% similar to the top-k relevant
set, this is generally not enough to improve the diversity of the results.

On amazon0601, ca-AstroPh, and soc-LiveJournal1 datasets, we observed

that the results of different scenarios are similar. Hence, we combine the scenarios

and display the results on all queries46. Also note that the results of BC2 and its

relaxation are omitted from the plots of soc-LiveJournal1 dataset because of the

impractical runtimes.

Normalized relevance (rel) and difference ratio (diff ) plots in Figure 6.2 show

that Dragon and GSparse methods almost always return the results having 70%

46Due to space limitation we only display one plot per observation highlighted in the
text. The complete set of plots for each dataset, scenario, and measure is provided in the
supplementary material: http://bmi.osu.edu/hpc/data/Kucuktunc13WWW/results.pdf
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Figure 6.3: Coverage (σ2) of the algorithms with varying k. BestCoverage and Di-
vRank variants have the highest coverage on the graphs while Dragon, GSparse,
and k-RLM have similar coverages to top-k results.

similar items to top-k relevant set, and more than 80% rel score. A low rel score is

not an indication of being dissimilar to the query (unless rel→ 0); on the other hand,

since the scores have a power-law distribution, a high rel score usually implies that the

algorithm ignored the diversity of the results and did not change many results in order

to keep the relevancy high. The actual diff measures are also given in Figure 6.2.

Based on the expansion ratios (σ2) in Figure 6.3, BestCoverage and DivRank

variants, especially PDivRank and BC2, have the highest scores, hence the highest

coverage on the graphs with their diversified result set. Dragon, GSparse, as

well as k-RLM have expansion ratios similar to the top-k results, meaning that these

algorithms do not improve the coverage of the given graphs enough. GSparse reduces

the expansion ratio even more than the top-k set, proving that it is inappropriate for

the diversification task. It is important to note that σ2 scores are meaningless by

itself since query-oblivious greedy-σ2 algorithm would maximize the coverage.

Figure 6.4 shows the proposed expanded relevance scores (exprel2) of the result

sets. BC1 and BC2 variants are significantly better than the other algorithms, where
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Figure 6.4: Expanded relevance (exprel2) with varying k. BC1 and BC2 variants mostly
score the best, GrassHopper performs high in soc-LiveJournal1. Although
PDivRank gives the highest coverage on amazon0601 (Fig. 6.3), it fails to cover
the relevant parts.

GrassHopper is able to score closer to BestCoverage only in soc-LiveJournal1

dataset. Although DivRank variants perform the highest based on expansion ratio

(see Figure 6.3), their results are shown to be unable to cover the relevant parts of

the graph as they score lower than BestCoverage variants.

For cit-Patents and web-Google datasets, we report the results on queries of

scenarios 1 and 3 separately. Here we omit the results of scenario-2 queries since they

are in between scenarios 1 and 3. These plots share the conclusions we have made so

far based on the results on previous three datasets; however, they present different

behavior based on the chosen scenario, so we provide a deeper analysis on those.

Figure 6.5 shows that the exprel2 results on cit-Patents dataset vary based on

the scenario chosen to generate the queries. In fact, the results are higher than normal

for scenario-1 queries. This is because of the low average degree (δ̄ = 8.7) and low

clustering coefficient (CC = 0.09) of the graph. Also note that the relaxations of BC1
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Figure 6.5: Expanded relevance (exprel2) with varying k. BestCoverage variants
perform higher than usual on cit-Patents dataset with scenario-1 queries because
of the low average degree (δ̄ = 8.7) and low clustering coefficient (CC = 0.09) of the
graph. The relaxed algorithms perform closer to their originals, meaning that they
were both efficient and effective on this type of sparsely connected graphs.

and BC2 perform closer to BC1 and BC2, meaning that the relaxed algorithms are both

efficient and also effective on this type of sparsely connected graphs.

It is also more clear on plots in Figure 6.6 that DivRank variants implicitly

optimize the expansion ratio (σ2) of the results, but without considering whether

those results are still relevant to the query. As a striking example of scenario-1 queries

on web-Google dataset, it is quite interesting to see an algorithm to perform the

best with respect to the size of the expansion set, but almost the worst with respect

to the relevancy of the same set (see Figure 6.5).
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cit-Patents, scenario 1
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Figure 6.6: Coverage (σ2) of the algorithms with varying k. DivRank variants appear
to be implicitly optimizing the size of the expansion set, without considering whether
those results are still relevant to the query (cf. corresponding exprel2 in Figure 6.5).

With the runtime experiments shown in Figure 6.7, we also confirm that the

relaxed variants of BestCoverage perform closer to their originals (see Figure 6.4)

with an order of magnitude or more gain in efficiency. In all cases, even in soc-

LiveJournal1, which is the largest dataset in our experiments, the BC1 method

always performs better with a running time less than GrassHopper and DivRank

variants, while the relaxed version scores closer enough with a running time slightly

higher than the original PPR computation. Therefore, in terms of the running times,

the efficient algorithms are generally ordered according to PPR ≤ k − RLM ≤

BC1(relaxed) ≤ Dragon ≤ BC1. Confirming the observation in [101], DivRank

variants are more efficient than GrassHopper for k > 10. Runtime of BC2 de-

pends on the dataset properties while its relaxed variant has comparable running

times to DivRank variants. Both BC2 and its variant has a very high runtime on

ca-AstroPh since this dataset has the highest average degree (δ̄ = 42.2) and the
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Figure 6.7: Running times of the algorithms with varying k. BC1 method always
perform better with a running time less than GrassHopper and DivRank variants,
while the relaxed versions score similarly with a slight overhead on top of the PPR

computation.

clustering coefficient (CC = 0.63), hence, each exprel2 computation is more costly

than the ones on other datasets.

6.4.4 Intent-aware results

Among the five datasets we selected for the experiments, cit-Patents has the

categorical information. One of the 426 class labels was assigned to each patent,

where those classes hierarchically belong to 36 subtopics and 6 high-level topics47.

47Available at: http://data.nber.org/patents/
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Here we present an evaluation of the intent-oblivious algorithms against intent-aware

measures. This evaluation provides a validation of the diversification techniques with

an external measure such as group coverage [90] and S-recall [144].

Intents of a query set Q is extracted by collecting the classes, subtopics, and topics

of each seed node. Since our aim is to evaluate the results based on the coverage of

different groups, we only use scenario-3 queries that represent multiple interests.

One measure we are interested in is the group coverage as a diversity measure [90].

It computes the number of groups covered by the result set and defined on classes,

subtopics, and topics based on the intended level of granularity. However, this mea-

sure omits the actual intent of a query, assuming that the intent is given with the

classes of the seed nodes.

Subtopic recall (S-recall) has been defined as the percentage of relevant subtopics

covered by the result set [144]. It has also been redefined as Intent-Coverage [146],

and used in the experiments of [135]. S-recall of a result set S based on the set of

intents of the query I is computed with

S-recall(S, I) =
1

|I|
∑
i∈I

Bi(S), (6.18)

where Bi(S) is a binary variable indicating whether intent i is found in the results.

We give the results of group coverage and S-recall on classes, subtopics, and topics

in Figure 6.8. The algorithms GrassHopper and GSparse are not included to the

results since they perform worse than PPR. The results of AllRandom are included to

give a comparison between the results of top-k relevant set (PPR) and ones chosen

randomly.

As the group coverage plots show, top-k ranked items of PPR do not have the

necessary diversity in the result set, hence, the number of groups that are covered by
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Figure 6.8: Intent-aware results on cit-Patents dataset with scenario-3 queries.

these items are the lowest of all. On the other hand, a randomized method brings

irrelevant items from the search space without considering their relevance to the user

query. The results of all of the diversification algorithms reside between those two

extremes, where the PDivRank covers the most, and Dragon covers the least

number of groups.

However, S-recall index measures whether a covered group was actually useful or

not. Obviously, AllRandom scores the lowest as it dismisses the actual query (you

may omit the S-recall on topics since there are only 6 groups in this granularity level).

Among the algorithms, BC2 variants and BC1 score the best while BC1 (relaxed) and

DivRank variants have similar S-recall scores, even though BC1 (relaxed) is a much

faster algorithm than any DivRank variant (see Figure 6.7).
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6.5 Summary

In this work, we address the problem of evaluating result diversification as a

bicriteria optimization problem with a relevance measure that ignores diversity, and

a diversity measure that ignores relevance to the query. We prove it by running

query-oblivious algorithms on two commonly used combination of objectives. Next,

we argue that a result diversification algorithm should be evaluated under a measure

which tightly integrates the query in its value, and presented a new measure called

expanded relevance. Investigating various quality indices by computing their pairwise

correlation, we also show that this new measure has no direct correlation with any

other measure. In the second part, we analyze the complexity of the solution that

maximizes the expanded relevance of the results, and based on the submodularity

property of the objective, we present a greedy algorithm called BestCoverage, and its

efficient relaxation. We experimentally show that the relaxation carries no significant

harm to the expanded relevance of the solution.
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Chapter 7: Conclusions and Future Research Directions

In this dissertation we have investigated result diversification problem in various

applications and data types. As the meaning of diversity/novelty differs for different

applications and use cases, we provided insightful details, and sometimes a complete

recommendation framework (for the paper recommendation application) and pre-

sented geometric, index-based, and graph-based solutions. For all the solutions, we

consider the overall accuracy of the recommendation, as well as the efficiency of the

proposed method. The proposed methods and our findings can be summarized as

follows.

7.1 Summaries and our findings

Diverse Browsing on Spatial and Multidimensional Data. In Chapter 2, we

investigate the diversification problem in multi-dimensional nearest neighbor search.

Because diverse k-nearest neighbor search is conceptually similar to the idea of natural

neighbors, we give a definition of diversity by making an analogy with the concept

of natural neighbors and propose a natural neighbor-based method. Observing the

limitations of NatN-based method in higher dimensional spaces, we present a Gabriel

graph-based method that scales well with dimensionality. We also introduce an index-

based diverse browsing method, which maintains a priority queue with the ranks of
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the objects depending on both relevancy and diversity, and efficiently prunes non-

diverse items and nodes in order to efficiently get the diverse nearest neighbors. To

evaluate the diversity of a given result set to a query point, a measure that captures

both the relevancy and angular diversity is presented.

We experiment on spatial and multi-dimensional, real and synthetic datasets to

observe the efficiency and effectiveness of proposed methods, and compare with index-

based techniques found in the literature. We summarize our findings as follows: (1)

Geometric approaches are suitable for static data, and index-based diverse browsing

is for dynamic databases. (2) Index-based diverse browsing method performed more

efficient than k-NN search with distance browsing on R-tree (in terms of the number

of disk accesses) and more effective than other methods found in the literature (in

terms of MMR). (3) Gabriel graph-based method performed well in high dimensions,

which can be investigated more and applied to other research fields where search in

high dimensional space is required.

Sentiment Analysis and Opinion Diversification. In Chapter 3, we use a sen-

timent extraction tool to investigate the influence of factors such as gender, age,

education level, the topic at hand, or even the time of the day on sentiments in the

context of a large online question answering site. We start our analysis by looking at

direct correlations, e.g., we observe more positive sentiments on weekends, very neu-

tral ones in the Science & Mathematics topic, a trend for younger people to express

stronger sentiments, or people in military bases to ask the most neutral questions.

We then extend this basic analysis by investigating how properties of the (asker,

answerer) pair affect the sentiment present in the answer. Among other things, we
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observe a dependence on the pairing of some inferred attributes estimated by a user’s

ZIP code. Finally we report results for the task of predicting the attitude that a

question will provoke in answers, and discuss the possibility of using demographic

features for the opinion diversification task.

Some selected findings of our work are the following: (1) There is a strong de-

pendency on the topic. Topics such as Beauty & Style attract strong and generally

positive sentiments, whereas Science & Mathematics attracts answers of low sentimen-

tality. (2) Demographic factors suggest a strong influence in our data, with women

generally expressing stronger, more positive sentiments than men, young people being

more positive than older people, and people from predominantly black neighborhoods

expressing relatively more neutral sentiments. We also observe a trend for more edu-

cated people to give less sentimental answers. (3) Sentiments show temporal variation.

At a monthly level, the most positive sentiments are observed both during the sum-

mer and December. At a daily level, the most positive sentiments are expressed on

Saturday and Sunday. At an hourly level, the attitude is at its lowest at around five in

the morning. (4) People have stronger tendency to give neutral answers as they gain

more experience in the online world. (5) Best answers differ significantly from other

answers in terms of expressed sentiments with more neutral answers being preferred

in Business & Finance and more positive ones in News & Events.

Graph-based Paper Recommendation and Diversity. Chapter 4 focuses on

the paper recommendation problem on academic networks, and how the mentioned

ambiguity and redundancy issues interacts with the users’ preferences and satisfi-

ability of the results. To observe those effects, we built a paper recommendation
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service called theadvisor which recommends new papers to researchers using only

the reference-citation relationships between academic papers.

For the efficiency of the recommendation algorithm, we propose compression and

bandwidth reduction techniques to reduce the memory usage and hence, the band-

width required to bring the matrix from the memory at each iteration. We also used

matrix ordering techniques to reduce the number cache misses.

Lastly, we address the diversification of paper recommendations of theadvisor

service. While giving a survey of diversity methods designed specifically for random

walk-based rankings, we adapted those methods to our direction-aware problem, and

proposed some new ones based on vertex selection and query refinement.

For the accuracy of the recommendation algorithms, direction-aware variants out-

perform the existing algorithms when the objective is to find either traditional or

recent papers. Experimental results on efficiency show the modifications greatly help

to reduce the query execution time. We tested the algorithms with different K values

to find the best configuration. The fastest algorithm is COO-Half where K = 8 and

the diagonal blocks are ordered with AMD. The average query response time for this

configuration, which is being used in theadvisor, is 1.51 seconds. Compared with

the execution time of CRS-Full with the original ordering, which is 4.55 seconds, we

obtain 3 times improvement. Finally, our experiments with various relevancy and

diversity measures show that the proposed γ-RLM algorithm can be preferred for

both its efficiency and effectiveness.

Exploratory Search and Result Diversification. In Chapter 5 we identify the

properties that an academic recommendation service should provide to its users as

218



exploration of the data. We argue that the existing academic services lack some of the

mentioned properties. In our paper recommendation service, exploration is achieved

by three techniques leading to an overall description of the area (through diversifi-

cation), guiding technique to reinforce interest (through recommendation feedback)

and manual discovery (through visualization).

We exemplify the effects of reranking the recommendations with a diversification

method on a real world query, and show that the recommendations with k-RLM

diversification improve the set of recommendations by eliminating redundant results

and by covering other fields of interest. For the relevance feedback, the results show

that the feedback mechanism, especially positive feedback, allows to speedup the

process of searching for specific references.

Graph Diversity and Common Pitfalls in its Evaluation. In Chapter 6, we

address the problem of evaluating result diversification as a bicriteria optimization

problem. We prove it by running query-oblivious algorithms on two commonly used

combination of objectives. Next, we argue that a result diversification algorithm

should be evaluated under a measure which tightly integrates the query in its value,

and presented a new measure called expanded relevance.

The main and most important conclusion of this work is that result diversification

should not be evaluated as a bicriteria optimization problem with a relevance measure

that ignores diversity and a diversity measure that ignores relevancy.

Investigating various quality indices by computing their pairwise correlation, we

show that the proposed measure has no direct correlation with any other measure.

We also analyze the complexity of the solution that maximizes the expanded relevance
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of the results, and based on the submodularity property of the objective, we present a

greedy algorithm called BestCoverage, and its efficient relaxation. We experimentally

show that the relaxation carries no significant harm to the expanded relevance of the

solution.

7.2 Open problems

In this dissertation on various diversification problems, we have introduced novel

techniques, efficiency improvements, and new measures to the literature; however,

these new developments have also established new research problems and application

areas. We would like to discuss some of the open problems for future research.

Diverse Browsing on Spatial and Multidimensional Data. Since there are

numerous application areas of diverse k-nearest neighbor search, the proposed geo-

metric and index-based methods can be adapted to work with different types of data

and distance metrics. Especially databases with an index built on top of a multidi-

mensional feature column can provide the diverse browsing feature to its users since

R-tree and R*-tree are the two most common spatial partitioning methods used in

popular DBMSs.

Sentiment Analysis and Opinion Diversification. Given that we observed sig-

nificant differences concerning sentiments between different demographic groups, this

could be used to normalize individual sentiments to obtain a better idea about devi-

ations from the expected behavior. For example, a “pretty good” by an older person

might be equivalent to an “absolutely amazing” by a teenager. The availability of a
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topical classification makes it possible to differentiate sentiments attached to a par-

ticular entity according to the context, and to obtain a more faceted representation

of the opinions about an entity.

One interesting problem is to apply sentiment prediction techniques in other do-

mains. For example, it would be interesting to predict the sentiments of comments

left in response to a news article. Potentially, such techniques could even be used by

blog writers to improve user engagement by providing them with indications about

how to make their posts more controversial. Similarly, we deem it interesting to gen-

eralize our findings concerning the sentiments present in best answers to the more

general problem of evaluating content quality. The presence/absence of sentiments in

the text of a news article might be an indication of its quality.

Graph-based Paper Recommendation and Diversity. In our recommendation

system, the citation graph is built and assumed to be unweighted. However, it is

possible and arguable more beneficial if weights are assigned to the edges based on

how many times a paper cites another. This way, the citation/reference relationship

between two papers can be boosted if one paper repeatedly mentions the other, which

generally corresponds to the importance of the reference itself. In addition, a paper

recommender service would provide more relevant and up-to-date results with more,

recent, and high-quality bibliographic data. Obtaining new sources of bibliographic

entries and including papers from new research fields will improve the quality of the

paper recommendations for interdisciplinary studies. It is also possible to conduct an

intensive user study to obtain a real-world evaluation of the system.
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For the efficiency part, developing new ideas to further reduce the query response

time of the service will be one of the tasks we are interested in as long as it is running.

Since it is very hard to obtain linear speedups with shared memory parallelization in

SpMxV operations, to maximize the throughput we chose to use one processor per

query. However, we believe that such parallelism can still be effective for theadvisor

especially when the number concurrent requests is less than the number of processors

allocated in the cluster.

Diversification of the paper recommendations was obtained using a graph-based

method. As there are significant amount of research on intent-aware diversification,

it would be possible to understand the intent of the query or the user by analyzing

the textual content of the provided references. The next reasonable step for a better

paper recommendation, hence, would be to obtain full-text sources of the indexed

documents, and provide diversity based on textual similarities.

Exploratory Search and Result Diversification. Although the interplay be-

tween diversification, feedback, and visualization has not been explored in the context

of paper recommendation, they provide a mechanism similar to drill-down/roll-up op-

erations in data warehousing context, which are shown to be very important features

for users to adjust the level of detail. An analysis on the logs and interactions recorded

by the service would provide information on how those components are employed by

the users of the system regarding their objective to discover new papers in the liter-

ature.
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Graph Diversity and Common Pitfalls in its Evaluation. The proposed

exprel` measure and the BestCoverage algorithm that finds a near-optimal solu-

tion are shown to be useful in the context of graph-based result diversification where

the intents of the query or indexed data is unknown. It is possible to investigate

the behavior of the exprel` measure on applications where categories or intents are

explicitly provided, e.g., social networks with ground-truth communities.
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