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Abstract—Literature search is an integral part of the aca-
demic research. Academic recommendation services have been
developed to help researchers with their literature search, many
of which only provide a text-based search functionality. Such
services are suitable for a first-level bibliographic search; how-
ever, they lack the benefits of today’s recommendation engines.
In this paper, we identify three important properties that an
academic recommendation service could provide for better liter-
ature search: personalization, scalability, and exploratory search.
With these objectives in mind, we present a web service called
theadvisor which helps the users build a strong bibliography by
extending the document set obtained after a first-level search.
Along with an efficient and personalized recommendation algo-
rithm, the service also features result diversification, relevance
feedback, visualization for exploratory search. We explain the
design criteria and rationale we employed to make the theadvisor
a useful and scalable web service with a thorough evaluation.

I. INTRODUCTION

We argue that an academic recommendation system must
allow a researcher to execute a complex personalized query
and to obtain the highest accuracy, the query should be
processed at a conceptual level. Yet, even the best algorithms
may not be able to pinpoint the important documents precisely,
only the user will recognize them. Therefore, the tool should
also allow the user to explore its database in multiple ways
to enable discovering interesting documents. Furthermore,
such a system needs to be efficient to keep the response time
short enough to encourage its users to issue more queries,
and since the amount of data will increase, the system must
also be scalable to stay efficient in the future.

Existing academic services: One of the many academic
services, DBLP is publicly available and references more
than two million papers in computer science with complete
bibliographic information, venue of publication, and author
disambiguation (proper handling of homonyms). CiteSeerχ
is another service which harvests the web for publications
in computer and information sciences. The service analyses
the documents and extracts their text, titles, authors, and
reference lists. The data is used to feed multiple services
including citation analysis within CiteSeerχ and automatic
paper recommendation based on text similarity in RefSeer [1].

CiteULike is a social tagging application where researchers
manage their bibliography, tag them with keywords, and
share it with other researchers. The service can then provide
a recommendation based on the common interests between
researchers. Services similar to CiteULike help researchers to
select and group papers and let them specify different areas of

interests, but the recommendation part is commonly very lim-
ited. Microsoft Academic Search is a text-based search engine
which also features filtering by areas, topics, co-authorship
information, and temporal trends. Similarly, ArnetMiner also
allows to search with respect to trends, rankings, and topics of
researchers/conferences.

Google Scholar is a popular and generic academic text-
based search engine which exposes citations of papers. As new
documents are indexed, the service also provides personalized
suggestions, however, only based on the current publications
of the user. This strategy is beneficial to stay up-to-date on
published topics, but when a researcher starts working in a new
discipline, such a system cannot provide relevant information.

Motivation and contributions: All these existing services
allow to perform simple queries on the data they host such as
“which documents are popular in a given topic or relevant to a
keyword?”, “which researchers are close to a topic or another
researcher?”, or “are there any documents that match a given
set of keywords?”. While writing an article, these questions
are good starting points, which we refer to as first-level bibli-
ographic search. A recommender system employing features
like personalization, exploratory search, etc., could provide a
better literature search. Existing web services generally address
the scalability concerns; however, none of these services are
personalized and exploratory to a satisfactory extent.

We present theadvisor (http://theadvisor.osu.edu), a web
service to improve the literature search process with a
personalized and exploratory search. We previously evaluated
the direction awareness feature [2], presented preliminary
results on result diversification [3], and the details of various
efficient implementations [4], [5]. The contributions of
this paper can be summarized as: (1) we describe each
component of the framework in detail, (2) we show how
relevance feedback and result diversification improve the
service in practice, (3) we present a novel and efficient hybrid
implementation of the recommendation algorithm, and (4)
we show how different techniques complement each other to
provide a powerful document discovery engine.

II. FRAMEWORK OVERVIEW

The framework has four main components: (a) paper map-
per finds the entities in our citation graph which correspond the
input from the user, (b) recommendation engine recommends
a diversified set of papers to the user, (c) visualization uses
graph drawing techniques on the recommended paper set to
visualize the relations between them, and (d) relevance feed-
back gets the comments from the user on the recommendations
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and refines the search accordingly. Figure 1 gives an overview
of theadvisor’s framework and the relationship between its
components.
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Fig. 1. Overview of the theadvisor framework.

Dataset collection: We retrieved information on 1.9M com-
puter science articles from DBLP (http://dblp.uni-trier.de/),
740K technical reports on physics, mathematics, and computer
science from arXiv (http://arxiv.org/), and 40K publications
from HAL-Inria (http://hal.inria.fr/) open access library. This
data is well-formatted and disambiguated; however, it contains
only a few citation information (less than 470K edges). We
obtained the data from CiteSeerχ (http://citeseerx.ist.psu.edu/)
using the OAI interface in March 2012 to increase the number
of paper-to-paper relations of computer science publications.
After the papers from four datasets are merged, and the papers
without any references or incoming citations are discarded, the
final citation graph has about 1M papers and 6M references,
which is currently being used in our service.

Paper mapper: The recommendation process starts with con-
verting the entries within user’s bibliography file (in BibTeX,
RIS, or EndNote XML format) into the internal IDs of the
papers. This set will be used as the seed papers. The rest of
the components are discussed in the following sections.

III. PERSONALIZATION AND ACCURACY

There are several citation recommendation approaches in
the literature, many of which employ textual similarity between
documents. However, it has been shown that text-based similar-
ity is not sufficient for this task and that most of the relevant
information is contained within the references [6]. Besides,
it is plausible that there is already a correlation between
citation similarities and text similarities of the papers [7]. In
theadvisor, we use the citation graph of known bibliogra-
phy [2]. In other words, we do not take the textual data into
account because our aim is to find all conceptually related, high
quality documents even if they use a different terminology.

A. Citation recommendation
To rank the papers, we use a PageRank variant on the cita-

tion graph which is based on the Random Walk with Restarts
algorithm (RWR). As PageRank models a random surfer, in
theadvisor, our algorithm models a random researcher who
picks a paper, reads it, and continue with a random reference.

Let G = (V,E) be the citation graph, with n papers
V = {v1, . . . , vn}. In G, each directed edge e = (vi, vj) ∈ E
represents a citation from vi to vj . For the rest of the paper,
we use the phrases “references of v” and “citations to v” to
describe the graph around vertex v; δ−(v) and δ+(v) to denote
the number of references of and citations to v, respectively.

The paper recommendation problem is defined as follows:
Given a set of m seed papers Q = {q1, . . . , qm} s.t. Q ⊂ V
and a parameter k, return the top-k papers which are relevant
to the ones in Q. We define a random walk on G arising
from following the edges (links) with equal probability and a

random restart at an arbitrary vertex with (1−d) teleportation
probability. The probability distribution over the states follows
the discrete time evolution equation pt+1 = P pt, where pt

is the vector of probabilities of being on a certain state at
iteration t, and P is the transition matrix defined as:

P(u, v) =

{
(1− d) 1n + d 1

δ(v) , if (u, v) ∈ E

(1− d) 1n , otherwise,
(1)

where δ(v) = δ−(v) + δ+(v) is the total degree of the vertex
v ∈ V . If the network is ergodic (i.e., irreducible and non-
periodic), the process converges to a stationary distribution
π = Pπ after a number of iterations. The final distribution π
gives the PageRank scores [8] of the nodes based on centrality.

In our problem, a set of nodes Q was given as a query,
and we want the random walks to teleport to only those given
nodes. Let us define a prior distribution p∗(v) which is 1/m
for v ∈ Q and 0, otherwise. If we substitute the (1/n)s in (1)
with p∗, we get a variant of PageRank, which is known as
personalized PageRank (PPR) or topic-sensitive PageRank [9].
PPR scores can be used as the relevance scores of the items
in the graph. The rank of each seed node is reseted after the
system reaches to a steady state, i.e., ∀q ∈ Q, πq ← 0, since
the objective is to extend Q with the results.

We introduce the direction awareness parameter κ ∈ [0, 1]
to obtain either more recent or more traditional results in the
top-k documents [2]. Given a query with a seed paper set
Q, a damping factor d, and a direction awareness parame-
ter κ, direction-aware random walk with restart (DARWR)
computes the steady-state probability vector π. The rank
vector at iteration t is computed with the linear equation
pt+1 = p∗ + Apt, where p∗ is an n × 1 restart probability
vector defined above, and A is a structurally-symmetric n×n
matrix of edge weights, such that a nonzero aij is equal to
d(1−κ)
δ+(i) or dκ

δ−(i) for (i, j) ∈ E and (j, i) ∈ E, respectively.

Figure 2 shows how the probability of a node is distributed
among its references, citations, and query papers. Note that P,
the transition matrix of random walk-based methods, is built
using A and p∗; however, the edge weights in rows can be
stored and read more efficiently with A in practice [4], [5].

B. Experiments on citation recommendation
As stated above, the direction awareness feature was eval-

uated in [2]. We present the results here for a complete
evaluation of the framework.

Parameter test: We study the impact of the damping factor d
and the direction-awareness parameter κ on the recommended
papers. We will show that changing these parameters obtains
recommendations that are either closer to or farther from
the seed papers Q, and/or that are either recent or more
traditional. To verify these effects, the references of a
randomly selected source paper, published between 2005 and
2010, are used as the seed papers. We use the top-10 results
as the recommended paper set R. The test is repeated for
2500 distinct queries that satisfy the given constraints.

Figure 3 shows the impacts of d and κ on the average
publication year in R and the average shortest distance in
the citation graph between R and Q. When we increase the
damping factor d, the probability of a random walk jumping
back to the nodes in Q reduces; hence, it allows reaching
vertices distant from Q more often. Figure 3 (right) shows
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Fig. 2. At each iteration, DARWR distributes the
rank of paper v towards its references (a and b), citing
papers (c and d), and the query papers (qi ∈ Q)
weighted according to the parameters (d, κ).
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Fig. 3. The average shortest distance from seed papers (left) and publication year (right) of top-10
recommendations by DARWR based on d and κ. Setting a higher value of d should allow to find
relevant papers whose relations to the query are not obvious. κ parameter allows the user to obtain
recent papers by setting it close to 1 or finding older papers by setting it close to 0

TABLE I. RESULTS OF THE EXPERIMENTS WITH MEAN AVERAGE

PRECISION (MAP@50) AND 95% CONFIDENCE INTERVALS.

hide random hide recent hide earlier
mean interval mean interval mean interval

DARWR 48.00 46.80 49.20 42.22 40.95 43.50 60.64 59.48 61.80
PaperRank 56.56 55.31 57.80 38.75 37.50 40.00 58.93 57.76 60.10
Katzβ 46.33 45.16 47.50 34.56 33.42 35.70 44.19 42.97 45.40
Cocitation 44.60 43.39 45.80 14.22 13.25 15.20 55.97 54.64 57.30
Cocoupling 17.28 16.36 18.20 17.56 16.61 18.50 2.93 2.57 3.30
CCIDF 18.05 17.11 19.00 18.97 17.94 20.00 3.55 3.10 4.00

that increasing d leads to earlier papers since they tend to
accumulate more citations. But for a given κ, varying the
damping factor does not allow to reach a large diversity of time
frames. The direction-awareness parameter κ can be adjusted
to reach papers from different years with a range from late
1980’s to 2010 for almost all values of d. In our online service,
the parameter κ can be set to a value of user’s preference.

Accuracy: We test the quality of the recommended citations
by different methods in three different scenarios: The hide
random scenario represents the typical use-case where a
researcher is writing a paper and trying to find some more
references. To simulate that, a source paper s with more than
20 references is randomly selected from the papers published
between 2005 and 2010. Then we remove s and all the papers
published after s from the graph. δ+(s)/10 references of s are
randomly selected as the hidden set, and the rest is used as the
query papers. We compute the citation recommendations on Q
and report the mean average precision (MAP) of finding hidden
papers within the top-50 recommendations for 2500 indepen-
dent queries. In the hide recent scenario, the hidden paper are
chosen as the most recent references. Similarly, we define hide
earlier where the hidden papers are the oldest publications.

The methods are compared on three scenarios against
widely-used citation based approaches: bibliographic cou-
pling [10], Cocitation [11], CCIDF [12], PAPERRANK [13]
and the Katz distance [14]. The parameters that lead to the best
accuracy in different experiments are selected, i.e., d = 0.75
for both PAPERRANK and DARWR, and κ = 0.75, 0.95, 0.25
for hide random, recent, and earlier scenarios, respectively.

Table I presents the MAP scores on there scenarios with
their 95% confidence intervals. Cocoupling, CCIDF and Coc-
itation never perform best. Although PAPERRANK achieves
the best results when the query is generic (on the hide random
scenario); its direction-aware variant leads to a higher accuracy
when the query is targeted. In each scenario, the confidence
interval of the method that performs the best does not intersect
with the intervals of other methods, indicating that their
dominance is statistically significant.

IV. EXPLORATORY SEARCH

In our service, we provide the exploratory search func-
tionality with (a) result diversification so that researchers
may find papers from different aspects of the query, (b)
relevance feedback so that researchers can focus on only
the areas that they are interested in, and (c) visualization
so that relevant papers that did not appear in the top-10
results are visible with their relationships to the seed papers
as well as other recommendations. We give the details of
each component and their experimental results below; however,
since the exploratory search is more of a personalized and
subjective matter, it is typically difficult to quantify its effects.
We give an overview of how result diversification, relevance
feedback, and visualization are useful in Figure 4.

A. Result diversification
Methods such as DARWR tend to naturally return many

recommendations from the same area of the graph, which
leads to a poor coverage of the potential interests of the users.
Diversifying the recommendations refers to the methods that
increase the amount of distinct information one can reach via
an automatized search. Diversification for the random-walk-
based methods attracted attention recently: GRASSHOPPER

addresses diversified ranking on graphs by vertex selection
with absorbing random walks [15]. DIVRANK uses a greedy
vertex selection process and updates the transition matrix
at each iteration with respect to the current node ranks by
introducing a rich-gets-richer mechanism to the ranking [16].
DRAGON approaches the problem from an optimization point,
proposes the goodness measure to combine relevancy and
diversity, and presents a near-optimal algorithm [17].

We can use any of these algorithms in theadvisor since
they can be easily enhanced with the direction-awareness
property; however, the main criteria we need to consider here
is the efficiency, and hence, whether or not the diversification
algorithm can be used in a real-time service. We previously
showed that GRASSHOPPER has a high time complexity and
it is not scalable to large graphs; DIVRANK updates the full
transition matrix in each iteration, hence more iterations are
needed for its convergence; and DRAGON could not provide a
diverse enough set of results [3].

We argue that finding the vertices which are locally
maximum in the graph with respect to their ranks and returning
the k most relevant ones will diversify the results and increase
the coverage of citation graph. Once the ranks are computed,
the straightforward approach for identifying the local maxima
is to iterate over each node in the graph and check if its rank is
greater than all of its neighbors’ with a O(|E|) algorithm. The
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(d) DARWR results after feedback

Fig. 4. Exploratory properties on a sample graph. Seed papers in Q are highlighted in (a), top-k recommendations of DARWR are dominated by the papers
in the left part of the graph (b), diversified results with k-RLM introduce papers from different aspects of the query (c). When positive feedback is given to the
papers in Topics 5 and 6, and negative feedback is given to the rest of the results, the recommendations are more focused on the right part of the graph (d).

top-k results k-RLM diversified
paper label paper label

Govan09 GM Govan09 GM
Kourtis08 C Kourtis08 C
Lao10 GM Lao10 GM
Abbey10 GM Bradley10 GM
Bradley10 GM Hoemmen10 Sp
Hoemmen10 Sp Saak64 GPU
Knight06 GM Guo10 GPU
Davis97 P Lee10 MC
Toledo97 Sp Im04 GPU
Im00 Sp Kaiser10 MC

topic query top-k k-RLM
Multicore 2 0 2
GPU 2 0 3
Eigensolver 1 0 0
Graph Mining 3 5 3
Compression 1 1 1
Generic SpMV 1 3 1
Partitioning 1 1 0

Fig. 5. Comparison of the recommendations of DARWR and diversified
DARWR for a given query related to SpMV optimization for emerging
architectures. Without diversification, five out of ten recommendations are
related to graph mining, where three of them are neighbors. Diversification
allows to cover more topics by eliminating redundant results and including
items from uncovered topics.

drawback of diversifying with local maxima is that for large
k’s (i.e., k > 10), the results of the recommendation algorithm
are generally no longer related to the queried seed papers.
Popular papers in unrelated fields can be returned, e.g., a set
of well-cited physics papers for a computer science related
query. Although this might improve the diversity, it hurts the
relevancy, hence, the results will no longer be useful to the
user. In order to keep the results within a reasonable relevancy
threshold and to diversify them at the same time, we relax the
algorithm by incrementally getting local maxima only within
the top-γk results and removing the selected vertices from the
subgraph for the next local maxima selection until |S| = k.
We refer to this algorithm as parameterized relaxed local
maxima (γ-RLM). Note that 1-RLM reduces to DARWR.

Experiments: We have given the quantitative analysis of γ-
RLM and compared against the listed diversification methods
with various relevance and diversity measures in [3]. Here, we
try to exemplify the effects of reranking the recommendations
with a diversification method on a real world query1. The
recommendations are diversified, visualized within theadvisor,
and manually clustered. The number of recommendations
belonging to the clustered topics are given in Fig. 5.

The query is the bibliography of a submitted paper related
to SpMV optimization for emerging architectures, hence a
multidisciplinary paper. Although the query includes a couple
of graph mining papers, 50% of top-k recommendations are
related to graph mining. k-RLM diversification improves the
results by eliminating redundant ones and covering other top-
ics. Indeed, no results from the Multicore and GPU categories

1The query is available at http://theadvisor.osu.edu/csfeedback.php?q=
e302d9fea1f22310cbf64c39a0a20d4e.ris,0.75

were returned before. After diversification, these two topics are
now covered. If the user is interested in finding more GPU re-
lated papers she may give a positive feedback on the current set
and refine the search without diversification. We believe that
diversification is an essential part of the paper recommendation
process, especially when the query is composed of multidisci-
plinary papers and/or papers from separate disciplines.

B. Relevance feedback
Relevance feedback is an important part of the recom-

mendation system since users may give positive and negative
feedbacks on the results in order to reach to desired papers or
topics. Users of theadvisor are given the option of providing
explicit relevance feedback to the set of recommended papers.
The feedbacks can be either positive or negative, making a
recommendation relevant or irrelevant for the query. When the
user refines the query with the relevance feedback, the relevant
results are added to Q, and the irrelevant results are removed
from the citation graph with all of their incident edges.

Experiments: In this test, 2500 source papers are randomly
selected. For each source paper s, the graph is pruned by
removing the papers published after s. Then, a target paper t is
selected from the pruned graph, such that it is the most relevant
paper at distance 3 from the source (i.e., t = argmaxt∈V pt,
s.t. d(s, t) = 3 and year[t]≤year[s]). Assuming that a user
can only display 10 results at a time, we measure the number
of pages that the user has to go through until she reaches
t. We compare the feedback mechanism with the following
behaviors: (1) No feedback: There is no feedback mechanism;
the user should keep going to the next page until she finds
the target paper. (2) Only positive feedback (+RF): Relevant
results are added to Q in the next step, irrelevant results should
not be displayed again. (3) Only negative feedback (-RF):
Irrelevant results are removed from the graph, relevant results
are kept but will not be displayed again. (4) Both positive and
negative (±RF): Results are labeled as either relevant to be
added to Q or irrelevant to be removed from the graph.

Figure 6-(left) presents the performance profile of the ex-
periments. A feedback policy passing through point (ratio, τ)
achieves a result at worse ratio times the number of pages
of the best policy in a fraction τ of the case. Figure 6-(right)
presents the percentage of pages needed to find a target paper
at distance−3 with positive and/or negative relevance feedback
compared to not using feedback at all. Using negative feedback
only reduces the number of pages one has to go through
by 30.01% on average and using positive feedback allows to
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Fig. 6. Relevance feedback experiments: performance profiles (left) and
sample of the number of pages one has to go through expressed as a percentage
of the number of pages without using any feedback (right), e.g., using only
positive feedback allows to reduce the number of pages by 80.39% on average.

reduce the number of pages by 80.39% on average. Using both
negative and positive feedback reduces the number of pages
by 77.15% on average. The results show that the feedback
mechanism, especially positive feedback, allows to speedup
the process of searching for specific references.

C. Data visualization
Representation of the recommendations in a web service

is crucial for user experience. Aside from displaying the
full bibliographic entries for the list of suggested papers, we
also visualize the results and their relationships to the seed
papers and papers that are given positive feedback before.
The sample graph (see Fig. 7) consist of the seed papers Q
(blue), recommendations (green), and top-100 relevant papers
(white). The subgraph is extracted from those vertices and all
the edges within this subset. We then apply a force-directed
layout algorithm [18] to improve the representation as well as
expose the paper clusters.
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Fig. 7. Visualization of a sample query.

V. EFFICIENCY AND SCALABILITY

As described above, each iteration of the ranking algo-
rithm DARWR contains a sparse-matrix dense-vector mul-
tiplication (SpMV). This sparse linear algebra kernel is the
building block of theadvisor’s recommendation engine. With
a straightforward and traditional implementation of SpMV, the
ranking algorithm itself was taking around 3.5 seconds with
full citation graph on a cutting edge CPU. Hence, the ranking
algorithm needs to be optimized for an efficient web service.

We first observed that the nonzero pattern of the citation
matrix is highly irregular and the computation suffers from
this irregularity due to the high number of cache misses.
Since there will be a penalty for each cache miss, we apply
preprocessing steps, partitioning and ordering, to reduce the
number of cache misses and make the ranking algorithm
faster. Figure 8 shows the sparsity pattern of the matrix
before (a) and after (b) the preprocessing obtained by using

a hypergraph partitioning model and the Reverse Cuthill-
McKee (RCM) [19] heuristic. In the original matrix, the
nonzeros are distributed randomly. After the preprocessing,
83% of the nonzeros are placed in the diagonal blocks
of the ordered matrix. Note that the preprocessing step is
query oblivious, and it is only done once when the graph
is updated. We also experimented with two other ordering
heuristics, i.e., Approximate Minimum Degree (AMD) [20]
and SlashBurn [21]. Some of these experiments with three
different SpMV implementations can be found in [4], [5].

The first implementation, CRS-Full, is the straightforward
implementation of DARWR, assuming the citation matrix A
is stored in compressed row storage (CRS) format. In CRS, the
nonzeros in the same row are stored adjacently in two arrays
which contain the column indices and the nonzero values. An
additional array is used to mark the first nonzero for each row
in these arrays. At each iteration, the probability of each vertex
x is distributed among its neighbors unless its rank pt−1(x) is
zero. In the second implementation CRS-Half, we only use the
reference edges (so we omit half of the nonzeros in the full
matrix). For the remaining edges, the values of the nonzero
elements are not explicitly stored. Instead, before iteration t,
we scale the vector entry pt−1(v) with

d(1−κ)
δ+(v) to find the

nonzero values at row v. For contributions due to the citation
edges of v (column v of the matrix), we use dκ

δ−(v) to scale

pt−1(v). In the third implementation, COO-Half, we used the
optimizations described for CRS-Half but store the row and
column coordinates of the nonzeros explicitly.

The CRS-based algorithms can avoid some updates if they
have no effect on pt, i.e., with a simple check pt−1(v) = 0
for each v. Since COO-Half stores and processes the nonzeros
independently, it needs to do the check for each nonzero and
this would be very expensive. CRS-Full can avoid roughly 12
million nonzeros/updates in the first iteration. This number is
roughly 6 million for CRS-Half. COO-Half traverses all 12
million nonzero elements and does the corresponding updates
even if most of them have no effect for the first couple of
iterations. However, the number of positive values in pt−1

increases exponentially during the first iterations. As Figure 9
shows, the shortcuts in CRS-based algorithms are extremely
useful for a couple of iterations. The figure also implies that the
citation graph is highly connected since DARWR and seems to
traverse almost all the nonzeros in A. That is, random walks
and paths can reach to almost all vertices in the graph. We
observed that 97% of the vertices of the citation graph G are
in a single connected component.

Based on the observation that CRS-Full is very efficient for
the first couple of iterations, and COO-Half is efficient overall,
we propose to combine those methods to build a Hybrid
algorithm that runs CRS-Full at the beginning, and switches
to COO-Half when the CRS-Full iterations take longer than
COO-Half. When the service starts, multiple recommendations
are performed with CRS-Full and COO-Half. The time of
each iteration is logged and used to decide when COO-Half
becomes more efficient that CRS-Full. In theadvisor, the first
four iterations are performed with CRS-Full, and subsequent
iterations are performed with COO-Half.

Experiments: We run the experiments on an architecture with
a 2.27GHz quad-core Intel Xeon (Bloomfield) CPU and 48GB
of main memory. Each core has 32KB L1 and 256KB L2
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Fig. 8. Our citation graph represented in matrix
form (a), the row/column ordered matrix with
RCM (b), AMD (c), SlashBurn (d).
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query, DARWR performs 20 iterations.

caches and each socket has an 8MB L3 cache. All of the
algorithms are implemented in C++. The compiler gcc and
the -O2 optimization flag are used. For the experiments, we
use only one core from each processor. For DARWR, we use
the default values of the service, which are d = 0.8, κ = 0.75.

Figure 10 shows the execution time of each algorithm on
the citation graph partitioned with different Ks (i.e., K =
1, 2, 4, 8, 16, 32, 64) and ordered with different heuristics (i.e.,
RCM, AMD, SB). The simple implementation using CRS-Half
takes 2.96 seconds. Using COO-Half drops the runtime to 2.3
seconds. Partitioning the matrix in 8 parts and ordering it with
AMD allow to reach a runtime of 1.22 seconds [4].

Hybrid lines represent the algorithm we propose in Sec-
tion V. The hybrid implementation was able to reduce the best
execution time from 1.22 seconds to 1.09 seconds, which is
more than 10% improvement. Note that in SpMV operations,
it is very hard to obtain linear speedup with shared memory
parallelization. Hence, to maximize the throughput we chose
to use one processor per query. The proposed algorithm will
further reduce the latency and improve the throughput of the
service, as well as user experience.

VI. CONCLUSIONS

In this work, we identify the properties that an academic
recommendation service should provide to its users as (1) per-
sonalized search, (2) exploration of the data, and (3) efficient
and scalable methods. We argue that the existing academic
services lack some of the mentioned properties. We introduce
theadvisor, a service that exhibits those properties. Personal-
ization is achieved by the user indicating a set of relevant doc-
uments. Exploration is achieved by three techniques leading
to an overall description of the area (diversification), guiding
technique to reinforce interest (relevance feedback) and manual
discovery (visualization). The efficiency of the service is en-
sured by classical HPC techniques. All the features of the sys-
tem are based on sound algorithmic decisions and are shown
to be very beneficial in practice. We believe that theadvisor
will find its place in the ecosystem of academic web services.

Currently, the service only uses textual information for
displaying them. In the future, we will use such information to
capture the intent of citations and to obtain topical information.
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