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Abstract—Graphs and matrices are widely used in algorithms
for social network analyses. Since the number of interactions is
much less than the possible number of interactions, the graphs
and matrices used in the analyses are usually sparse. In this
paper, we propose an efficient implementation of a sparse-
matrix computation which arises in our publicly available citation
recommendation service called theadvisor. The recommendation
algorithm uses a sparse matrix generated from the citation graph.
We observed that the nonzero pattern of this matrix is highly
irregular and the computation suffers from high number of
cache misses. We propose techniques for storing the matrix in
memory efficiently and reducing the number of cache misses.
Experimental results show that our techniques are highly efficient
on reducing the query processing time which is highly crucial
for a web service.

Index Terms—Citation recommendation; social network anal-
ysis; sparse matrices; hypergraphs; cache locality.

I. INTRODUCTION

Sparse-matrix computations working exclusively on nonzero

entries are usually not suitable for today’s cache architectures

if an ordinary ordering of the rows/columns/nonzeros is used.

The difficulty arises from the fact that the memory access

pattern in such computations depends on the nonzero distribu-

tion in the matrix which usually does not have a well-defined

regular structure. If the access pattern is random, the number

of cache misses through the computation increases. Since there

will be a penalty for each cache miss, reordering the nonzero

accesses in the matrix is a good idea to reduce the number of

cache misses and hence, the execution time.

One of the most widely used operation in network analysis

is sparse matrix-dense vector multiplication (SpMxV). This

operation is assumed to be the computational bottleneck for the

network analyses based on random walk with restart (RWR)

which is used in PageRank [1], impact factor computations [2],

recommendation systems [3], [4] and finding/predicting ge-

netic interactions [5].

In this paper, we target a citation, venue, and expert rec-

ommendation problem in our publicly available web-service

called theadvisor1. The service takes a bibliography file in

various formats (bib,ris,xml) that contains a set of seed papers

to initiate the recommendation process. Then, it returns a set

of papers ordered with respect to a ranking function. The user

can guide the search or prune the list of suggested papers

with positive or negative feedbacks by declaring some papers

relevant or irrelevant. In this case, the service completely

1http://theadvisor.osu.edu/

refines the set and shows the new results back to the user.

In addition to papers, theadvisor also suggests researchers or

experts, and conferences or journals of interest. The service is

designed to help to the researchers while performing several

tasks, such as:

• literature search,

• improving the reference list of a manuscript being written,

• finding conferences and journals for attendance, subscrip-

tion, or paper submission,

• finding a set of researchers in a field of interest to follow

their work,

• finding a list of potential reviewers, which is required by

certain journals in the submission process.

The algorithm we use in theadvisor is based on RWR

and can be naively implemented as an SpMxV operation.

There exist several methods in the literature proposed to

improve the cache locality for the SpMxV operations by

reordering the rows and/or columns of the matrix by us-

ing graph/hypergraph partitioning [6], [7], [8], [9], [10] and

other techniques [11], [12], [13], [14]. The recommendation

algorithm used in theadvisor is direction aware. That is, the

user can specify that she is interested in classical papers or

recent papers. This property brings a unique characteristic

to the SpMxV operation used in the service which makes

existing hypergraph partitioning based techniques [6], [8], [9]

not directly applicable.

In this paper, our contribution is two-fold: First, we pro-

pose techniques to efficiently store the matrix used by our

direction-aware algorithm. We then propose an efficient im-

plementation of the algorithm and investigate several matrix

ordering techniques based on a hypergraph partitioning model

and ordering heuristics, such as the Approximate Minimum

Degree (AMD) [15] and Reverse Cuthill-McKee (RCM) [16].

We give a thorough evaluation of the proposed approach

and measure the efficiency of implementation and matrix stor-

ing/ordering techniques used in theadvisor. The combination

of all the techniques improved the response time of our service

by 67% (3x). We believe that the techniques proposed here can

also be useful for SpMxV-related sparse-matrix problems in

social network analysis.

State-of-the-art hypergraph partitioners are typically too

slow to be used to optimize just a couple of SpMxV operations.

However, considering theadvisor’s purpose, the algorithm will

be executed many times whereas the ordering is required only
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once. The current version of our service is already using the

implementation and ordering described in this paper.

The paper is organized as follows: In Section II, we

describe the hypergraph partitioning problem and existing

matrix ordering techniques for SpMxV. In Section III, we

formally describe our direction-aware RWR algorithm and

its efficient implementation used in theadvisor. The ordering

techniques we use are given in Section IV. Section V gives

the experimental results and Section VI concludes the paper.

II. BACKGROUND

A. Modeling sparse matrices with hypergraphs

A hypergraph H = (V,N ) is defined as a set of vertices

V and a set of nets (hyperedges) N among those vertices. A

net η ∈ N is a subset of vertices, and the vertices in η are

called its pins . The size of a net is the number of its pins,

and the degree of a vertex is equal to the number of nets that

contain it. A graph is a special instance of hypergraph such

that each net has size two. Vertices can be associated with

weights, denoted with w[·], and nets can be associated with

costs, denoted with c[·].
A K-way partition of a hypergraph H is denoted as Π =

{V1,V2, . . . ,VK} where parts are pairwise disjoint, each part

Vk is a nonempty subset of V , and union of K parts is equal

to V .

In a partition Π, a net that has at least one pin (vertex)

in a part is said to connect that part. The number of parts

connected by a net η, i.e., connectivity, is denoted as λη. A

net η is said to be uncut (internal) if it connects exactly one

part, and cut (external), otherwise (i.e., λη > 1).

Let Wk denote the total vertex weight in Vk and Wavg

denote the weight of each part when the total vertex weight is

equally distributed. If each part Vk ∈ Π satisfies the balance
criterion

Wk ≤ Wavg(1 + ε), for k = 1, 2, . . . , K (1)

we say that Π is balanced where ε represents the maximum

allowed imbalance ratio.

The set of external nets of a partition Π is denoted as NE .

Let χ(Π) denote the cost, i.e., cutsize, of a partition Π. There

are various cutsize definitions [17]. In this work, we use

χconn(Π) =
∑
η∈N

c[η](λη − 1) . (2)

The cutsize metric given in (2) will be referred to as

connectivity-1 metric. Given ε and an integer K > 1, the

hypergraph partitioning problem can be defined as the task of

finding a balanced partition Π with K parts such that χ(Π)
is minimized. The hypergraph partitioning problem is NP-

hard [17] with any of the above objective functions. We used

a state-of-the-art partitioning tool PaToH [18].

There are three well-known hypergraph models for sparse

matrices. These are the column-net [19], row-net [19], and

fine-grain models [20]. Here, we describe the column-net

model we used for a sparse matrix A of size n × n with

m nonzeros. In the column-net model, A is represented as a

unit-cost hypergraph HR= (VR,NC) with |VR|= n vertices,

|NC | = n nets, and m pins. In HR, there exists one vertex

vi ∈ VR for each row i. Weight w[vi] of a vertex vi is equal

to the number of nonzeros in row i. There exists one unit-cost

net ηj ∈ NC for each column j. Net ηj connects the vertices

corresponding to the rows that have a nonzero in column j.

That is, vi ∈ ηj if and only if aij �= 0. The row-net model is

the column-net model of the transpose of A.

B. Matrix ordering techniques for improving cache locality in
SpMxV

The SpMxV operation is defined as y ← Ax where A is

an n×n sparse matrix with m nonzeros, x is the n× 1 input

vector, and y is the n× 1 output vector. Let P and Q be two

n × n permutation matrices. That is, P and Q have only a

1 in each of their rows and columns and the rest is 0. When

the matrix A is ordered as A′ = PAQ, the SpMxV operation

can be written as y′ ← A′x′ where y′ = Py and x′ = QT x.

Some existing cache-locality optimization techniques use this

fact and permute the rows and columns of A to improve

cache locality. To find good P and Q, several approaches are

proposed in the literature: Bandwidth reduction is proven to be

promising for decreasing cache misses [14]. For this reason,

the reverse Cuthill-McKee heuristic [16] has been frequently

used as a tool and a benchmark by several researchers [7],

[13], [21]. RCM has also been frequently used as a fill-in

minimization heuristic for sparse LU factorization. Another

succesful fill-in minimization heuristic, the approximate min-

imum degree (AMD) [15], is also used for improving cache

locality [21]. Graph and hypergraph partitioning models and

techniques have been extensively studied for reducing cache

misses [6], [7], [8], [9], [10]. Among those, the most similar

ones to our work are [8], [9] and [6], which use hypergraph

partitioning as the main tool to reduce the number of cache

misses.

As should be evident, the sparse matrix storage format and

the cache locality are related. In this work, we use two of the

most common formats. The coordinate format (COO) keeps an

array of m triplets of the form 〈aij , i, j〉 for a sparse matrix A
with m entries. Each triplet contains a nonzero entry aij and

its row and column indices (i, j). The COO format is suitable

for generating arbitrary orderings of the non-zero entries. The

compressed row storage format (CRS) uses three arrays to

store a n × n sparse matrix A with m nonzeros. One array

of size m keeps the values of nonzeros where the nonzeros in

a row are stored consecutively. Another array parallel to the

first one keeps the column index of each nonzero. The third

array keeps the starting index of the nonzeros at a given row

where the ending index of the nonzeros at a row is one less

than the starting index of the next row. A matrix represented

in CRS is typically 30% smaller than the COO since the m
entries representing i in COO are compressed in an array of

size n in CRS.
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III. DIRECTION-AWARE RWR FOR CITATION

RECOMMENDATION

Citation analysis-based paper recommendation has been

a popular problem since the 60’s. There are methods that

only take local neighbors (i.e., citations and references) into

account, e.g., bibliographic coupling [22], cocitation [23], and

CCIDF [24]. Recent studies, however, employ graph-based

algorithms, such as Katz [25], random walk with restarts [26],

or well-known PageRank algorithm to investigate the whole

citation network. PaperRank [27], ArticleRank [28], and Katz

distance-based methods [25] are typical examples.

For our recommendation service, theadvisor, we designed

an algorithm based on RWR on a directed citation graph G =
(V,E) where V = {1, . . . , n} is the vertex set and E, the

edge set, contains an edge (i, j) if paper i cites paper j. We

defined a direction awareness parameter κ ∈ [0, 1] to obtain

more recent or traditional results in the top-k documents.

A. Random Walk with Restart

Let deg+(i) and deg−(i) be the number of references of and

citations to paper i, respectively. Given a query with inputs k,

a seed paper setM, damping factor d, and direction awareness

parameter κ, our algorithm computes the steady-state probabil-

ity vector p. For an iterative RWR implementation, at iteration

t, the two types of contributions of paper i to a neighbor paper

are defined as:

c+
t (i) = pt−1(i)

d(1− κ)
deg+(i)

, (3)

c−t (i) = pt−1(i)
dκ

deg−(i)
, (4)

where pt−1 is the probability (rank) vector after the (t− 1)th
iteration, c+

t (i) is the contribution of paper i to a paper in

its reference list and c−t (i) is the contribution of paper i to

a paper which cites i. The rank of paper i after iteration t is

computed with,

pt(i) = r(i) +
∑

(i,j)∈E

c−t (j) +
∑

(j,i)∈E

c+
t (j), (5)

where r is the restart probability vector due to jump backs to

the papers in M, computed with,

r(i) =

{
1−d
|M| , if i ∈M
0, otherwise.

(6)

Hence, each iteration of the algorithm can be defined with the

following linear equation:

pt = r + Apt−1, (7)

where r is an n × 1 restart probability vector calculated

with (6), and A is a structurally-symmetric n × n matrix of

edge weights, such that

aij =

⎧⎪⎨
⎪⎩

d(1−κ)
deg+(i) , if (i, j) ∈ E

dκ
deg−(i) , if (j, i) ∈ E

0, otherwise.

(8)

The algorithm converges when the probability of the papers

are stable, i.e., when the process is in a steady state. Let

Δt = (pt(1)− pt−1(1), . . . ,pt(n)− pt−1(n)) (9)

be the difference vector. We say that the process is in the

steady state when the L2 norm of Δt is smaller than a given

value ξ. That is,

‖Δt‖2 =
√∑

i∈V

(pt(i)− pt−1(i))
2

< ξ. (10)

Assume that A is stored in CRS format. Algorithm 1 shows

the pseudocode of our RWR-based approach where at each

iteration, (7) is computed.

Algorithm 1: RWR with CRS-Full

Input: A: n×n input matrix in CRS format, seed paper setM
Output: Steady state probability vector p
pt ← 0
for each paper i ∈M do

pt(i)← 1
|M|

e← ‖pt‖2
while e > ξ do

pt−1 ← pt

pt ← 0
for each paper i = 1 to n do

1 if pt−1(i) > 0 then
for each nonzero aij in row i of A do

pt(j)← pt(j) + aijpt−1(i)

for each paper i ∈M do
pt(i)← pt(i) + 1−d

|M|
e← ‖pt − pt−1‖2

return p← pt

B. A more efficient RWR implementation

To compute (7), one needs to read all of A at each iteration.

Note that for each nonzero in A, there is a possible update

on pt. The number of vertices and edges in the citation graph

G are given in Table I. As described above, A contains 2|E|
nonzeros which is approximately equal to 12× 106. This size

allows us to index rows and columns using 32-bit values.

However, the probabilities and matrix entries are stored in

64-bit. Assuming it is stored in CRS format, the size of A
in memory is roughly 147MB.

TABLE I
STATISTICS FOR THE CITATION GRAPH G.

|V | |E| avg deg max deg+ max deg−
982,067 5,964,494 6.07 617 5418

Here, we propose two modifications to reduce A’s size and

the number of multiplications required to update pt. The first

modification is compressing the nonzeros in A: we know that

during an iteration, the contributions of paper i to the papers

in its reference list are all c−t (i). Similarly, the contributions
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of i to the papers which cite i are c+
t (i). Let sR and sC be

the row and column scaling vectors defined as

sR(i) =

{
d(1−κ)
deg+(i) , if deg+(i) > 0

0, otherwise
(11)

sC(i) =

{
dκ

deg−(i) , if deg−(i) > 0

0, otherwise.
(12)

For the papers without any references (deg+(i) = 0) or

citations (deg−(i) = 0), the contributions are adjusted so

that they not lost and only towards the other direction, i.e.,

sC(i) = d/deg−(i) or sR(i) = d/deg+(i), respectively. Let

B be the 0-1 adjacency matrix of G defined as

bij =

{
1, if (i, j) ∈ E

0, otherwise.
(13)

Then (7) can be rewritten as

pt = r + B(sR ∗ pt−1) + BT (sC ∗ pt−1), (14)

where ∗ denote the pointwise vector multiplication. In this

form, the total size of B, BT , sR, and sC is roughly 71MB

assuming we only store the indices of nonzeros in B and

BT . This modification not only reduces the size of A, but

also decreases the number of multiplications required in each

iteration. Here, we only need to do pointwise multiplications

sR ∗pt−1 and sC ∗pt−1 before traversing the nonzero indices.

Hence, we only need to do 2|V | multiplications per iteration.

Assuming pt(i) > 0 for all i ∈ V , Algorithm 1 (which

follows Equation (7)) performs 2|E| multiplications. Hence

this modification can lead up to 6 fold reduction on the number

of multiplications on our dataset.

We can further reduce the memory usage by using the fact

that bij = 1 if and only if bT
ji = 1. We can only store B,

and when we read a nonzero bij , we can do the updates on

pt both for bij and bT
ji. By not storing BT , we reduce the

size roughly to 43MB. Furthermore, we actually read two

nonzeros when we bring bij from the memory. However, we

still need to do two different updates. A similar optimization

has been proposed for some particular SpMxV operations [29].

Algorithm 2 shows the pseudocode of the RWR computation

with the modifications described above.

Although the proposed modifications reduce the size of A
and the number of multiplications, there is a drawback. In

Algorithm 1, line 1 first checks if pt−1(i) > 0. If this is not the

case there is no need to traverse any of the aijs. This shortcut

is especially useful when pt−1 contains only a few positive

values which is the case for the first few iterations. However,

such a shortcut, as in line 1 of Algorithm 2, only works for

nonzeros corresponding to the outgoing edges when the matrix

is reduced. That is, if bij is nonzero Algorithm 2 does the

update pt(j) ← pt(j) + spC(i) even though spC(i) is zero.

Hence, some updates with no effects are done in Algorithm 2,

although they are skipped in Algorithm 1.

If B is stored in COO format one needs roughly 63MB

in memory. In this format, the nonzeros are read one by

Algorithm 2: RWR with CRS-Half

Input: B: n× n adjacency matrix in CRS format, seed paper
set M, row and column scaling vectors sC and sR

Output: Steady state probability vector p
pt ← 0
for each paper i ∈M do

pt(i)← 1
|M|

e← ‖pt‖2
while e > ξ do

spR ← pt ∗ sR

spC ← pt ∗ sC

pt−1 ← pt

pt ← 0
for each paper i = 1 to n do

1 if spC(i) > 0 then
for each nonzero bij of B do

pt(i)← pt(i) + spR(j)
pt(j)← pt(j) + spC(i)

else
for each nonzero bij of B do

pt(i)← pt(i) + spR(j)

for each paper i ∈M do
pt(i)← pt(i) + 1−d

|M|
e← ‖pt − pt−1‖2

return p← pt

one. Hence, a shortcut for the updates with no effect is

not practical. On the other hand, with COO, we have more

flexibility for nonzero ordering, and techniques like blocking

can be implemented without any overhead. We give the COO

based pseudocode in Algorithm 3.

Algorithm 3: RWR with COO-Half

Input: B: n× n adjacency matrix in COO format, seed paper
set M, row and column scaling vectors sC and sR

Output: Steady state probability vector p
pt ← 0
for each paper i ∈M do

pt(i)← 1
|M|

e← ‖pt‖2
while e > ξ do

spR ← pt ∗ sR

spC ← pt ∗ sC

pt−1 ← pt

pt ← 0
for each nonzero bij of B do

pt(i)← pt(i) + spR(j)
pt(j)← pt(j) + spC(i)

for each paper i ∈M do
pt(i)← pt(i) + 1−d

|M|
e← ‖pt − pt−1‖2

return p← pt
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IV. EXPLOITING CACHE LOCALITY IN REDUCED MATRIX

OPERATIONS

As explained in the previous section, one of the techniques

we use for compressing the matrix is to store B, but not BT .

After this modification, when a nonzero bij is read, pt(i)
and pt(j) are updated accordingly. Hence, when we order

B’s rows with a permutation matrix P, we need to use the

same P to order the columns if we want to find the nonzero

indices in BT . Due to this reason, permuting the adjacency

matrix as B′ = PBPT is good practice for our problem.

Note that the original SpMxV problem does not have such

a restriction. Hence, existing hypergraph-partitioning-based

approaches cannot be directly applied for our problem [6],

[8], [9]. Note that we can still use symmetric permutations

such as the ones obtained by RCM and AMD.

Similar to existing partitioning-based approaches, we use a

two-phase permutation strategy which first partitions the rows

of B into K and sorts them in the increasing order of their part

numbers. The intra-part row ordering is decided later by using

RCM or AMD and the final permutation matrix P is obtained.

Our column-net hypergraph HR = (VR,NC) is created with

n vertices and n nets corresponding to the rows and columns

of B, respectively, as described in Section II-A. In HR, two

vertices vi and vi′ are connected via a net ηj if both bij and

bi′j is equal to 1. To handle the above mentioned restriction

of using the same permutation for rows and columns, we set

vi ∈ ηi for all i ∈ {1, . . . , n}. That is, we set all diagonal

entries of B, which originally has a zero diagonal, to 1 and

partition it. With this modification, a net j can be internal if

and only if the pins of j are in the same part with vertex j.

Hence, when we permute the rows and columns with respect

to the part numbers of the rows, the columns corresponding to

the internal nets of a part will be accessed by the rows only

in that part.

Since we store the matrix in CRS format, we know that

spC is accessed sequentially (even for COO-Half, our nonzero

ordering respects to row indices to some degree). Hence,

accessing to pt and spR with column indices will possibly

be the main bottleneck. We use PaToH [18] to minimize

connectivity − 1 metric (2) and improve cache locality.

Throughout the computation, the entry spR(j) will be put to

cache at least once assuming the jth column has at least one

nonzero in it. If column j is internal to part � then spR(j) will

be only accessed by the rows within part �. Since the internal

columns of each part are packed close in the permutation,

when spR(j) is put to the cache, the other entries of spR

which are part of the same cache line are likely to be internal

columns of the same part. On the other hand, when an external

column j is accessed by a part �′ which is not the part of j,

the cache line containing spR(j) is unlikely to contain entries

used by the rows in part �′. Minimizing the connectivity− 1
metric equals to minimizing the number of such accesses. Note

that the same is true for the access of pt with column indices.

We find intra-part row/column orderings by using RCM

and AMD. These heuristics have previously been used for

fill-in minimization in sparse LU factorization. RCM is used

to find a permutation σ which reduces the bandwith of

a symmetric matrix A where the bandwith is defined as

b = max({|σ(i) − σ(j)| : aij �= 0}). When the bandwith

is small, the entries are close to the diagonal, and the cache

locality will be high. The AMD heuristic also has the same

motivation of minimizing the number of fill-ins, which usually

densifies nonzeros in different parts of the matrix. Since having

nonzeros closed to each other is good for cache locality, we

used these heuristics to order rows and columns inside each

part.

For all of the algorithms described in Section III, we used

the proposed ordering scheme. For CRS-Full, we permutated

A, and for CRS-Half and COO-Half, we permuted B as

described above. For COO-Half, we also apply blocking

after permuting B: we divide B into square blocks of size

2048 × 2048 and traverse the nonzeros with respect to their

block ids (and rowwise within a block). The block size is

tuned on the architecture theadvisor is running on.

V. EXPERIMENTAL RESULTS

We used three different architectures to test the algorithms.

The main (target) one has a 2.4GHz AMD Opteron CPU and

4GB of main memory. The CPU has 64KB L1 and 1MB

L2 caches. Our service, theadvisor, is currently running on

a cluster with 50 nodes each having the above mentioned

architecture. For each query, the service opens a socket to

a running process, submits the query, and returns the results

to the user.

For completeness, we also test the algorithms on two

other more recent architectures. The second architecture has a

2.27GHz quad-core Intel Xeon (Bloomfield) CPU and 48GB

of main memory. Each core has 32KB L1 and 256KB L2

caches and each socket has an 8MB L3 cache. The third

architecture has a 2.4GHz quad-core AMD Opteron (Shanghai)

CPU and 32GB of main memory. Each core has 64KB L1 and

512KB L2 cache and each socket has a 6MB L3 cache. All

of the algorithms are implemented in C++. The compiler is

icc version 11.1 and the -O2 optimization flag is used. For the

experiments, we use only one core from each processor.

We generated 70 queries where each query is a set M of

paper ids obtained from the bibliography files submitted by the

users of the service who agreed to donating their queries for re-

search purposes. The number of seed nodes |M| of the queries

vary between 1 and 72, with an average of 17.9. For RWR,

we use d = 0.8 and κ = 0.75 which are the default values in

theadvisor. We did not use a threshold ξ for convergence. We

observed that RWR in our citation graph takes approximately

20 iterations to converge. Because computing the error be-

tween iterations takes some time and to be consistent in the ex-

periments, we let the algorithms iterate 20 times. While gener-

ating the partitions, we set the imbalance ratio of PaToH to 0.4.

As mentioned in Section III, the algorithms CRS-Full and

CRS-Half avoid some updates but COO-Half cannot, even they

have no effect on pt. In our query set, the average number

of seed papers is 17.9. In the first iteration, pt−1 has only

477484



� �� �� ��
�

�

�

�

�

��

��

��
	
��

�

��
������
�

�

��

��
�


�







��������
��������
��������

Fig. 1. Number of updates per iteration of the algorithms.

a few positive values on average, and CRS-Full updates pt

only for the corresponding papers in M. Since n 
 17.9,

CRS-Full avoids roughly 12 million nonzeros/updates in the

first iteration. This number is roughly 6 million for CRS-

Half. COO-Half traverses all 12 million nonzeros and does

the corresponding updates even if nearly all of them have

no effect. However, the number of positive values in pt−1

increases exponentially. As Figure 1 shows, the shortcuts in

CRS-based algorithms are not useful after the 8th iteration.

The figure also implies that the citation graph is highly

connected since the algorithms seem to traverse almost all the

nonzeros in A. That is, random walks can reach to almost all

vertices in the graph. We observed that 97% of the vertices of

the citation graph G are in a single connected component.

Fig. 2. The nonzero pattern of B (left) when ordered with RCM (middle)
and AMD (right). Nonzeros are colored with red and white areas show empty
regions.

The nonzero pattern of the adjaceny matrix B is given

in Figure 2 (left). As the figure shows, the nonzeros are

distributed in all matrix. In our experiments, the papers are

originally numbered with respect to the order we parse their

metadata. When B is ordered by using the RCM heuristic,

the nonzero pattern (middle) is densified near the diagonal as

expected. The bandwidths of the original and RCM ordered

B matrices are 981287 and 460288, respectively. Although

the bandwidth is reduced more than half, it is still large.

Figure 2 (right) shows the nonzero pattern of B when ordered

with the AMD heuristic. The nonzeros are densified inside

one horizontal and one vertical block. We observed that 80%
of the nonzeros are inside this region. As the figure shows,

the remaining nonzeros are located in smaller horizontal and

vertical regions which also may be helpful to reduce the

(a) B′ for K = 2 (left) and 4 (right)

(b) B′ with RCM for K = 2 (left) and 4 (right)

(c) B′ with AMD for K = 2 (left) and 4 (right)

Fig. 3. The nonzero pattern of the permuted adjacency matrix B′ with
different partitions and reordering heuristics. The row set of each part is shown
with a different color. The diagonal blocks contain bijs where row i and row
j of B are in the same part.

number of cache misses.

As described in Section IV, we first partition B in the

column-net model to reorder it. To do that, we use K =
{2, 4, 8, 16, 32, 64} and create 6 different partitions. For each

partition, we create a permutation matrix P and reorder B
as B′ = PBPT . Figure 3(a) shows the structure of the

nonzero pattern of B′ for K = 2 and 4. In the figure, the

horizontal (vertical) lines separate the rows (columns) of the

matrix w.r.t. their part numbers. The diagonal blocks in the

figure contain the nonzeros bijs where the ith and jth row

of B are assigned to the same part. Although the nonzeros

seem evenly distributed in B′, as Table II shows, for K = 2
and 4, the percentage of the nonzeros inside diagonal blocks

of B′ are 94% and 83%, respectively. We can argue that the

nonzeros are densified inside these blocks as expected.

We permute the rows and columns of the diagonal blocks
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TABLE II
NUMBER OF NONZEROS INSIDE AND OUTSIDE OF THE DIAGONAL BLOCKS

OF B′ AFTER REORDERING.

K 2 4 8 16 32 64
nnz in 5.62M 4.92M 4.39M 3.80M 3.46M 2.95M
nnz out 0.34M 1.04M 1.57M 2.16M 2.50M 3.01M
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(a) RCM

� � � � �� �� ��
	

�

�

�

�

�	

��

��

��

��

�
�	



�
��
 � ���!

�

"�
��

 �
!

��




!�
��
��


�
�"
�!
�






�����"��
��������
��������

(b) AMD

Fig. 4. Number of updates per second for each algorithm and ordering.

by using the ordering heuristics RCM and AMD. Figure 3(b)

and (c) show the nonzero patterns of this further permuted

matrix for K = 2 and 4.

Figure 4(a) and (b) show the number of updates per

seconds (nups) for each algorithm when RCM and AMD

heuristics are used, respectively. This experiment counts the

number of updates that occur in memory, even if they are

nilpotent. When the matrix is ordered with RCM, the par-

titioning has a positive effect on nups of CRS-Full which

increases from around 7 × 107 with no partitioning to over

8×107 with K = 8. Although the number of nonzeros outside

the diagonal blocks is more when K increases, the diagonal

blocks tend to get smaller and denser which may improve

the cache locality. We tested the algorithms with different

K values to find the best configuration. For example, when

K increases for RCM, the maximum nups is obtained with

K = 64. Such an improvement is also observed when AMD

is used. Compressing the matrix increases the nups for CRS-

Half up to 12× 107 with K = 32. And with blocking used in

COO-Half, nups increases to 16 × 107 with K = 8 which is
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Fig. 5. Execution times in seconds for each algorithm with different Ks
and ordering heuristics on AMD Opteron architecture with 1MB cache. The
values are the averages of the times for 70 queries.

� � � � �� �� ��
�

�	


�

�	


�

�	


�

�
��
�������

�&
��

��
��

�

���

�

��

�






��������
������� 
�!!���� 
��������
���"�
��������
�#"$�
������� 
���"�
������� 
�#"$�
�!!���� 
���"�
�!!���� 
�#"$�


������� 


��������


�!!���� 

Fig. 6. Execution times in seconds for each algorithm with different Ks
and ordering heuristics on AMD Opteron (Shanghai) architecture with 6MB
cache. The values are the averages of the times for 70 queries.

the maximum for this experiment.

Figure 5 shows the execution times of the algorithms for

different Ks and ordering heuristics on the target architecture

with 1MB L2 cache. As concordant with Figure 4, the fastest

algorithm is COO-Half where K = 8 and the diagonal blocks

are ordered with AMD. The average query response time for

this configuration, which is being used in theadvisor, is 1.51
seconds. Compared with the execution time of CRS-Full with

the original ordering, which is 4.55 seconds, we obtain 3 times

improvement. When K = 1, i.e., if there is no partitioning, the

execution time of COO-Half is 2.08. Hence, we obtain 25%
improvement due to partitioning.

We tested our modifications also on two other architectures

described above. On AMD Shanghai, the results are similar

as shown in Figure 6. COO-Half is the fastest algorithm, this

time with K = 16 and the AMD heuristic. However, matrix

compression seems to have a negative effect on CRS-Half.

Its execution time is more than CRS-Full with the original

ordering. This is unexpected since as shown in Figures 5

and 7, both on the target architecture and Intel Xeon, CRS-

Half is much faster than CRS-Full. On the Intel architecture,

the fastest algorithm is again COO-Half where the average

query response time is 0.68 seconds with K = 4 and the

AMD heuristic. Compared to the time of CRS-Full with no

ordering, which is 1.30 seconds, the improvement is 42%. If
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Fig. 7. Execution times in seconds for each algorithm with different Ks and
ordering heuristics on Intel Xeon architecture with 8MB cache. The values
are the averages of the times for 70 queries.

we apply only matrix compression and blocking with COO-

Half, the query response time is 1.07 seconds. Hence, we can

argue that we obtained 36% improvement by permuting the

reduced matrix. If we only use AMD, i.e., when K = 1,

the query response time of COO-Half is 0.75. This shows

roughly 10% improvement due to partitioning alone. Since

Intel Xeon’s cache is larger than the others, we believe that

when the matrix gets large, i.e., when the number of papers in

our database increases, the improvements will be much higher

on all architectures but especially on Intel Xeon.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an efficient implementation of an

SpMxV-type problem which arises in our publicly available ci-

tation, venue, and expert recommendation service, theadvisor.

We proposed compression and bandwidth reduction techniques

to reduce the memory usage and hence, the bandwidth required

to bring the matrix from the memory at each iteration. We also

used matrix ordering techniques to reduce the number cache

misses. Experimental results show these modifications greatly

help to reduce the query execution time.

As a future work, we are planning to develop new ideas to

further reduce the query response time. As far as the service

is running, this will be one of the tasks we are interested

in. Note that in SpMxV operations, it is very hard to obtain

linear speedup with shared memory parallelization. Hence,

to maximize the throughput we chose to use one processor

per query. However, we believe that such parallelism can

still be effective for theadvisor especially when the number

concurrent requests is less than the number of processors

allocated in the cluster.
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