
ORIGINAL ARTICLE

Fast recommendation on bibliographic networks
with sparse-matrix ordering and partitioning

Onur Küçüktunç • Kamer Kaya • Erik Saule •

Ümit V. Çatalyürek

Received: 1 December 2012 / Revised: 18 February 2013 / Accepted: 23 February 2013 / Published online: 20 March 2013
! Springer-Verlag Wien 2013

Abstract Graphs and matrices are widely used in algo-
rithms for social network analyses. Since the number of

interactions is much less than the possible number of inter-

actions, the graphs and matrices used in the analyses are
usually sparse. In this paper, we propose an efficient imple-

mentation of a sparse-matrix computation which arises in our

publicly available citation recommendation service
theadvisor as well as in many other recommendation sys-

tems. The recommendation algorithm uses a sparse matrix

generated from the citation graph. We observed that the
nonzero pattern of this matrix is highly irregular and the

computation suffers from high number of cache misses. We

propose techniques for storing the matrix in memory effi-
ciently and we reduced the number of cache misses with

ordering and partitioning. Experimental results show that our

techniques are highly efficient in reducing the query pro-
cessing time which is highly crucial for a web service.

Keywords Citation recommendation ! Social network
analysis ! Sparse matrices ! Hypergraphs ! Cache locality !
Ordering ! Partitioning

1 Introduction

Sparse-matrix computations working exclusively on non-

zero entries are usually not suitable for today’s cache
architectures if an ordinary ordering of the rows, columns,

or nonzeros is used. The difficulty arises from the fact that

the memory access pattern in such computations depends
on the nonzero distribution in the matrix which usually

does not have a well-defined regular structure. If the access

pattern is random, the number of cache misses through the
computation increases. Since there will be a penalty for

each cache miss, reordering the nonzero accesses in the

matrix is a good idea to reduce the number of cache misses
and hence, the execution time.

One of the most widely used operation in network

analysis is sparse matrix-dense vector multiplication
(SpMxV). This operation is assumed to be the computa-

tional bottleneck for network analyses based on a random
walk with restart (RWR) which is used in PageRank (Page

et al. 1999), impact factor computations (Bollen et al.

2006), recommendation systems (Kim and El Saddik 2011;
Yin et al. 2010) and finding/predicting genetic interactions

(Chipman and Singh 2009). The SpMxV kernel is also the

core of other graph-based metrics such as Katz which is
proposed by Liben-Nowell and Kleinberg (2007) for a

study on the link prediction problem on social networks

and used later for information retrieval purposes including
citation recommendation by Strohman et al. (2007).

In this paper, we target a citation, venue, and expert

recommendation problem in our publicly available web-

O. Küçüktunç (&)
Department of Computer Science and Engineering,
The Ohio State University, Columbus, OH, USA
e-mail: kucuktunc.1@osu.edu

O. Küçüktunç ! K. Kaya ! E. Saule ! Ü. V. Çatalyürek
Department of Biomedical Informatics,
The Ohio State University, Columbus, OH, USA

K. Kaya
e-mail: kamer@bmi.osu.edu

E. Saule
e-mail: esaule@bmi.osu.edu

Ü. V. Çatalyürek
e-mail: umit@bmi.osu.edu

Ü. V. Çatalyürek
Department of Electrical and Computer Engineering,
The Ohio State University, Columbus, OH, USA

123

Soc. Netw. Anal. Min. (2013) 3:1097–1111

DOI 10.1007/s13278-013-0106-z

Author's personal copy

service called theadvisor.1 The service takes a bibliogra-

phy file in various formats (bib, ris, xml) that contains a set
of query papers to initiate the recommendation process.

Then, it returns a set of papers ordered with respect to a

ranking function. The user can guide the search or prune
the list of suggested papers with positive or negative

feedbacks by declaring some papers relevant or irrelevant.

In this case, the service completely refines the set and
shows the new results back to the user. In addition to

papers, theadvisor also suggests researchers or experts, and
conferences or journals of interest. The service is designed

to help researchers while performing several tasks, such as:

– literature search,
– improving the reference list of a manuscript being

written,

– finding conferences and journals to attend, get sub-
scribed, or submit papers,

– finding a set of researchers in a field of interest to
follow their work,

– finding a list of potential reviewers, which is required

by certain journals in the submission process.

The algorithm we employed in theadvisor is based on

RWR and is implemented by using the SpMxV operation.

There exist several methods in the literature proposed to
improve the cache locality for the SpMxV operations by

ordering the rows and/or columns of the matrix by using

graph/hypergraph partitioning (Akbudak et al. 2012;
Toledo 1997; White and Sadayappan 1997; Yzelman and

Bisseling 2009, 2011) and other techniques (Agarwal et al.

1992; Pichel et al. 2005; Pinar and Heath 1999; Temam and
Jalby 1992). The recommendation algorithm used in

theadvisor is direction aware. That is, the user can specify

that she is interested in classical papers or recent papers.
This property brings a unique characteristic to the SpMxV

operation used in the service which makes existing hyper-

graph partitioning-based techniques (Akbudak et al. 2012;
Yzelman and Bisseling 2009, 2011) not directly applicable.

We recently experimented on a direction-aware Katz-based

algorithm and showed that it outperforms one without
direction awareness when the objective is to find either

traditional or recent papers (Küçüktunç et al. 2012a, b).
In this paper, our contribution is twofold: first, we pro-

pose techniques to efficiently store the matrix used by

direction-aware algorithms. We then propose efficient
implementations of the algorithm and investigate several

matrix ordering techniques based on a hypergraph parti-

tioning model and ordering heuristics, such as the
approximate minimum degree (AMD) (Amestoy et al.

1996), reverse Cuthill-McKee (RCM) (Cuthill and McKee

1969), and SlashBurn (Kang and Faloutsos 2011). State-of-

the-art hypergraph partitioners are typically too slow to be

used to optimize just a couple of SpMxV operations.
However, considering theadvisor’s purpose, the algorithm

will be executed many times whereas the ordering is

required only once. The current version of our service is
already using the implementation and ordering described in

this paper.

We give a thorough evaluation of the proposed approach
and algorithms, and measure the efficiency of the imple-

mentation and matrix storing/ordering techniques used in
theadvisor. The combination of all the techniques

improved the response time of our service by 67 % (39).

We believe that the techniques proposed here can also be
useful for SpMxV-related sparse-matrix problems in social

network analysis.

A preliminary version of this work was published in
Küçüktunç et al. (2012a, b). We extend in this paper the

discussion to a wider class of algorithms and exemplify the

discussion by using Katz-based metrics. We also investi-
gate the SlashBurn ordering. We discuss the impact of the

convergence of the method on the choice of representation

and ordering of the matrix.
The paper is organized as follows: In Sect. 2, we

describe the hypergraph partitioning problem and existing

matrix ordering techniques for SpMxV. In Sect. 3, we
formally describe our direction-aware RWR and Katz

algorithms and their efficient implementation where the

former RWR-based algorithm is used in theadvisor. The
ordering techniques we use are given in Sect. 4. Section 5

gives the experimental results and Sect. 6 concludes the

paper.

2 Background

2.1 Citation analysis: random walk with restart

and Katz

Citation analysis-based paper recommendation has been a

popular problem since the 1960s. There are methods that
only take local neighbors (i.e., citations and references)

into account, e.g., bibliographic coupling (Kessler 1963),

cocitation (Small 1973), and CCIDF (Lawrence et al.
1999). Recent studies, however, employ graph-based

algorithms, such as Katz Liben-Nowell and Kleinberg

(2007), random walk with restart (Pan et al. 2004), or well-
known PageRank algorithm to investigate the whole cita-

tion network. PaperRank (Gori and Pucci 2006), Article-

Rank (Li and Willett 2009), and Katz distance-based
methods (Liben-Nowell and Kleinberg 2007) are typical

examples.

We target the problem of paper recommendation
assuming that the researcher has already collected a list of1 http://theadvisor.osu.edu/.

1098 O. Küçüktunç et al.

123

Author's personal copy

http://theadvisor.osu.edu/

papers of interest. Let G = (V, E) be the directed citation

graph with a vertex set V ¼ f1; 2; . . .; ng and an edge set
E, which contains (i, j) if paper i cites paper j. We define

the problem as follows: given a set of query papers Q # V;
and a parameter k, return top-k papers which are relevant to
the ones in Q:

Let E0 be the undirected version of E, i.e., E0 ¼ ffi; jg :
ði; jÞ 2 Eg; and G0 ¼ ðV;E0Þ be the undirected citation
graph and d(i) denote the degree of a vertex i 2 V in G0.

Random walk with restart is a widely used method in many
fields. In citation analysis, RWR directs the random walks

towards both references and citations of the papers. In

addition, the restarts are directed only to the query papers
in Q: Hence, random jumps to any paper in the literature

are prevented. Starting from the query papers, we assume

that a random walk ends in paper i continues with a
neighbor with a damping factor d 2 ð0; 1&: And with

probability (1 - d), it restarts and goes back to the query

papers. Let ptðiÞ be the probability that a random walk ends

at vertex i 2 V at iteration t. Hence, p0ðiÞ ¼ 1
jQj for a query

paper i, and 0 for other papers. Let ct(i) be the contribution
of i to one of its neighbors at iteration t. In each iteration, d

of pt'1ðiÞ is distributed among i’s references and citations

equally, hence, ctðiÞ ¼ d pt'1ðiÞ
dðiÞ :

The Katz distance (Liben-Nowell and Kleinberg 2007)
is another measure which has been used for citation rec-

ommendation purposes (Strohman et al. 2007). The Katz

distance between two papers i; j 2 V is computed as:

Katzði; jÞ ¼
X1

‘¼1

b‘jpaths‘i;jj; ð1Þ

where b 2 ½0; 1& is the decay parameter, and jpaths‘i;jj is the

number of paths of length ‘ between i and j in the undi-

rected citation graph G0. Such a path does not need to be
elementary, i.e., the path i, j, i, j is a valid path of length 3.

Therefore, the Katz measure might not converge for all

values of b; it needs to be chosen smaller than the reci-
procal of the largest eigenvalue of the adjacency matrix of

G0.2 In citation recommendation with multiple query

papers, the relevance of a paper j is computed as
pðjÞ ¼

P
i2Q Katzði; jÞ:

2.2 Modeling sparse matrices with hypergraphs

A hypergraph H¼ðV;N Þ is defined as a set of vertices V
and a set of nets (hyperedges) N : A net g 2 N is a subset
of vertex set V; and the vertices in g are called its pins. The

size of a net is the number of its pins, and the degree of a

vertex is equal to the number of nets that contain it. Fig-
ure 1a shows a simple hypergraph with five vertices and

five nets. A graph is a special instance of hypergraph such

that each net has size two. Vertices can be associated with
weights, denoted by w½!&, and nets can be associated with

costs, denoted by c½!&.
A K-way partition of a hypergraph H is denoted as

P ¼ fV1;V2; . . .;VKg where parts are pairwise disjoint,

each part Vk is a nonempty subset of V; and union of the K

parts is equal to V:
In a partition P; a net that has at least one pin (vertex) in

a part is said to connect that part. The number of parts

connected by a net g, i.e., connectivity, is denoted as kg: A

net g is said to be uncut (internal) if it connects exactly one

part, and cut (external), otherwise (i.e., kg [1). In Fig. 1a

the toy hypergraph with four internal nets and an external

net is partitioned into two.
Let Wk denote the total vertex weight in Vk and Wavg

denote the weight of each part when the total vertex weight

is equally distributed. If each part Vk 2 P satisfies the
balance criterion

Wk)Wavgð1þ eÞ; for k ¼ 1; 2; . . .;K ð2Þ

we say that P is balanced where e represents the maximum

allowed imbalance ratio.
The set of external nets of a partition P is denoted as

N E: Let vðPÞ denote the cost, i.e., cutsize, of a partition P:
There are various cutsize definitions (Lengauer 1990). In

this work, we use

vconnðPÞ ¼
X

g2N
c½g&ðkg ' 1Þ ; ð3Þ

as also used by Akbudak et al. (2012) for similar purposes.

The cutsize metric given in (3) will be referred to as the
connectivity-1 metric. Given e and an integer K [1, the

hypergraph partitioning problem can be defined as the task

of finding a balanced partition P with K parts such that
vðPÞ is minimized. The hypergraph partitioning problem is

NP-hard (Lengauer 1990) with the above objective func-

tion. We used a state-of-the-art partitioning tool PaToH
(Çatalyürek and Aykanat 1999).

There are three well-known hypergraph models for

sparse matrices. These are the column-net (Çatalyürek and
Aykanat 1999), row-net (Çatalyürek and Aykanat 1999),

and fine-grain models (Çatalyürek and Aykanat 2001).

Here, we describe the column-net model we used for a
sparse matrix A of size n 9 n with m nonzeros. In the

2 The Katz centrality of a node i can be computed as KatzðiÞ ¼
Pn

j¼1 Katzði; jÞ ¼
Pn

j¼1

P1
‘¼1 b‘ðA‘Þji where A is the 0–1 adjacency

matrix of the citation graph. When b is smaller than the reciprocal of

the largest eigenvalue, the Katz centralities can be computed as ððI '
bAT Þ'1 ' IÞ I

!
where I is the identity matrix and I

!
is the identity

vector.

Fast recommendation on bibliographic networks 1099

123

Author's personal copy

column-net model, A is represented as a unit-cost hyper-

graph HR ¼ ðVR;NCÞ with jVRj ¼ n vertices, jN Cj ¼ n

nets, and m pins. In HR; there exists one vertex vi 2 VR for
each row i. Weight w½vi& of a vertex vi is equal to the number

of nonzeros in row i. There exists one unit-cost net gj 2 N C
for each column j. Net gj connects the vertices corresponding
to the rows that have a nonzero in column j. That is, vi 2 gj if

and only if aij = 0 (see Fig. 1). The row-net model is the

column-net model of the transpose of A:

2.3 Matrix ordering techniques for improving cache

locality in SpMxV

The SpMxV operation is defined as y Ax where A is an

n 9 n sparse matrix with m nonzeros, x is the n 9 1 input

vector, and y is the n 9 1 output vector. Let P and Q be
two n 9 n permutation matrices. That is, P and Q have

only a 1 in each of their rows and columns and the rest is 0.

When the matrix A is ordered as A0 ¼ PAQ; the SpMxV

operation can be written as y0 A0x0 where y0 ¼ Py and

x0 ¼ QT x: Some existing cache-locality optimization
techniques use this fact and permute the rows and columns

of A to improve cache locality.

To find good P and Q; several approaches are proposed
in the literature: bandwidth reduction is proven to be

promising for decreasing cache misses (Temam and Jalby

1992). For this reason, the reverse Cuthill-McKee heuristic
(Cuthill and McKee 1969) has been frequently used as a

tool and a benchmark by several researchers (Pichel et al.

2009; Pinar and Heath 1999; Toledo 1997). RCM has also
been frequently used as a fill-in minimization heuristic for

sparse LU factorization. Another successful fill-in mini-

mization heuristic, the approximate minimum degree
(AMD) (Amestoy et al. 1996), is also used for improving

cache locality (Pichel et al. 2009). Another ordering heu-

ristic SlashBurn has recently been proposed for graph
compression and mining (Kang and Faloutsos 2011).

Graph and hypergraph partitioning models and tech-

niques have been extensively studied for reducing cache
misses (Akbudak et al. 2012; Toledo 1997; White and

Sadayappan 1997; Yzelman and Bisseling 2009, 2011).

Among those, the most similar ones to our work are Yz-

elman and Bisseling (2009, 2011) and Akbudak et al.
(2012), which use hypergraph partitioning as the main tool

to reduce the number of cache misses.

As should be evident, the sparse matrix storage format and
the cache locality are related since the storage determines the

order in which the nonzeros are processed. In this work, we

use two of the most common formats. The coordinate format
(COO) keeps an array of m triplets of the form haij; i; ji for a

sparse matrix A with m entries. Each triplet contains a non-
zero entry aij and its row and column indices (i, j). The COO

format is suitable for generating arbitrary orderings of the

non-zero entries. The compressed row storage format (CRS)
uses three arrays to store a n 9 n sparse matrix A with m

nonzeros. One array of size m keeps the values of nonzeros

where the nonzeros in a row are stored consecutively.
Another array parallel to the first one keeps the column index

of each nonzero. The third array keeps the starting index of

the nonzeros at a given row where the ending index of the
nonzeros at a row is one less than the starting index of the next

row. A matrix represented in CRS is typically 30 % smaller

than the COO since the m entries representing i in COO are
compressed in an array of size n in CRS.

3 Direction-aware methods for citation
recommendation

As described previously, our recommendation service,

theadvisor, is designed to solve the following problem:
given the directed citation graph G = (V, E), a set of query

papers Q # V ; and a parameter k, return top-k papers

which are relevant to the ones in Q: We defined a direction
awareness parameter j 2 ½0; 1& to obtain more recent or

traditional results in the top-k documents (Küçüktunç et al.

2012a, b). Let d?(i) and d-(j) be the number of references
of and citations to paper u, respectively. The citation graph

we use in theadvisor has been obtained by cross-refer-

encing the data of four online databases: DBLP, CiteSeer,
HAL-Inria and arXiv. The properties of the citation graph

are given in Table 1.

(a) (b)

Fig. 1 A toy hypergraph with
five vertices and five nets
partitioned into two parts (left).
Net n4 is a cut net since it is
connected to two parts, hence,
k4 = 2. The rest of the nets are
internal. The corresponding
matrix (w.r.t. column-net
model) whose nonzero entries
are colored and zeros are shown
in white (right)

1100 O. Küçüktunç et al.

123

Author's personal copy

In this work, we discuss efficient ways to compute the

result set using two direction-aware algorithms. The first

one is based on the direction-aware random walk with
restart (DARWR) and the second one is based on the

direction-aware Katz similarity (DAKATZ). The following

sections present both methods by addressing their simi-
larities and differences when they are implemented with

SpMxV operations.

3.1 Direction-aware Random walk with restart

(DARWR)

Given G ¼ ðV ;EÞ; k; Q; d; and the direction awareness

parameter j, our algorithm computes the steady-state

probability vector p: For an iterative DARWR implemen-
tation, at iteration t, the two types of contributions of paper

i to a neighbor paper are defined as:

cþt ðiÞ ¼ pt'1ðiÞ
dð1' jÞ

dþðiÞ
; ð4Þ

c't ðiÞ ¼ pt'1ðiÞ
dj

d'ðiÞ
; ð5Þ

where ct
?(i) is the contribution of paper i to a paper in its

reference list and ct
-(i) is the contribution of paper i to a

paper which cites i. The rank of paper i after iteration t is

computed with,

ptðiÞ ¼ rðiÞ þ
X

ði;jÞ2E

c't ðjÞ þ
X

ðj;iÞ2E

cþt ðjÞ; ð6Þ

where r is the restart probability vector due to jump backs
to the papers in Q; computed with,

rðiÞ ¼
1'd
jQj ; if i 2 Q

0; otherwise.

(

ð7Þ

Hence, each iteration of the algorithm can be defined
with the following linear equation:

pt ¼ rþ Apt'1; ð8Þ

where r is an n 9 1 restart probability vector calculated
with (7), and A is a structurally symmetric n 9 n matrix of

edge weights, such that

aij ¼

dð1'jÞ
dþðiÞ ; if ði; jÞ 2 E
dj

d'ðiÞ ; if ðj; iÞ 2 E
0; otherwise.

8
><

>:
ð9Þ

The algorithm converges when the probability of the

papers are stable, i.e., when the process is in a steady state.

Let Dt ¼ ðptð1Þ ' pt'1ð1Þ; . . .; ptðnÞ ' pt'1ðnÞÞ be the
difference vector. We say that the process is in the

steady state when the L2 norm of Dt is smaller than a given

value n. That is,

kDtk2 ¼
ffiX

i2V

ptðiÞ ' pt'1ðiÞð Þ2
r

\n: ð10Þ

3.2 Direction-aware Katz (DAKATZ)

The direction awareness can be also adapted to other

similarity measures such as the graph-based Katz distance

measure (Liben-Nowell and Kleinberg 2007). We extend
the measure to weight the contributions to references and

citations differently with the j parameter as in DARWR.

Given G ¼ ðV;EÞ; Q; j; and an integer parameter L, the
relevance score of paper j is computed as:

pðjÞ ¼
X

i2Q
dLði; jÞ; ð11Þ

where dL(i, j) is the direction aware Katz distance between

a query paper i and paper j with the paths of length up to
L, computed recursively as:

dLði; jÞ ¼ bj
X

ðk;jÞ2E

dL'1ði; kÞ þ bð1' jÞ
X

ðj;kÞ2E

dL'1ði; kÞ;

ð12Þ

with the stopping case d0(i,i) = 1 if i 2 Q; and 0 otherwise.
The structure of the DAKATZ computation is very similar

to the one of DARWR, therefore, it can be efficiently

implemented with SpMxV operations as follows: the scores
are decayed and passed to the references and citations,

rather than distributed among them, hence:

aij ¼
bð1' jÞ; if ði; jÞ 2 E
bj; if ðj; iÞ 2 E
0; otherwise,

8
<

: ð13Þ

is used to build the structurally symmetric n 9 n transition

matrix A. There are no jumps to the query vertices;
therefore, the linear equation in (8) is simplified to:

pt ¼ Apt'1; ð14Þ

where the Katz distance is initialized with p0ðiÞ ¼ 1 if i 2 Q;
and 0 otherwise. The final relevance score pðiÞ of a vertex i

aggregates all Katz distances with each path length up to L, i.e.,

pðiÞ ¼
XL

t¼1

ptðiÞ: ð15Þ

Even though the relevance scores pðiÞ monotonically
increase with each iteration, the algorithm still converges

because of the decay parameter b.

Table 1 Statistics for the citation graph G

|V| |E| avg d max d? max d-

982,067 5,964,494 6.07 617 5,418

Fast recommendation on bibliographic networks 1101

123

Author's personal copy

3.3 Implementations with standard CRS (CRS-Full)

Assume that A is stored in CRS format and let Ai* be the ith
row of A: Algorithms 1 and 2 show the pseudocodes of

DARWR and DAKATZ where (8) or (14) is computed at

each iteration, respectively. Colored lines are used in order
to distinguish the differences between the two

computations.

To compute (8) or (14), one needs to read all of A at

each iteration. Note that for each nonzero in A; there is a
possible update on pt: As described above, A contains 2|E|

nonzeros which is approximately equal to 12 9 106. This

size allows us to index rows and columns using 32-bit
values. However, the probabilities and matrix entries are

stored in 64-bit. Assuming it is stored in CRS format, the

size of A in memory is roughly 147MB.

3.4 Implementations with halved CRS (CRS-Half)

Here, we propose two modifications to reduce A’s size and
the number of multiplications required to update pt: The

first modification is compressing the nonzeros in A: we

know that during an iteration, the contributions of paper
i to the papers in its reference list are all equal to ct

-(i).

Similarly, the contributions of i to the papers which cite i

are equal to ct
?(i). Let sR and sC be the row and column

scaling vectors defined for DARWR and DAKATZ as:

ðDaRWRÞ ðDaKatzÞ

sRðiÞ ¼
dð1'jÞ
dþðiÞ if dþðiÞ[0

0 otherwise.

(

sRðiÞ ¼
bð1' jÞ if dþðiÞ[0
0 otherwise.

"

ð16Þ

sCðiÞ ¼
dj

d'ðiÞ if d'ðiÞ[0
0 otherwise.

"
sCðiÞ ¼

bj if d'ðiÞ[0
0 otherwise.

"

ð17Þ

Let B be the 0–1 adjacency matrix of G defined as

bij ¼
1; if ði; jÞ 2 E
0; otherwise.

"
ð18Þ

Then (8) and (14) can be rewritten as

pt ¼ rþ BðsR + pt'1Þ þ BTðsC + pt'1Þ; ð19Þ

where * denote the pointwise vector multiplication. In this

form, the total size of B; BT ; sR; and sC is roughly 71MB
assuming we only store the indices of nonzeros in B and

BT : This modification not only reduces the size of A; but

also decreases the number of multiplications required in
each iteration. Here, we only need to do pointwise multi-

plications sR + pt'1 and sC + pt'1 before traversing the

nonzero indices. Hence, we only need to do 2|V| multipli-
cations per iteration. Assuming ptðiÞ[0 for all i 2 V;
Algorithms 1 and 2 perform 2|E| multiplications. Hence

this modification can lead up to sixfold reduction on the
number of multiplications on our dataset.

We can further reduce the memory usage by using the

fact that bij = 1 if and only if bji
T = 1. We can only store B;

and when we read a nonzero bij, we can do the updates on

pt both for bij and bji
T. By not storing BT ; we reduce the size

roughly to 43MB. Furthermore, we actually read two

nonzeros when we bring bij from the memory. However,
we still need to do two different updates. A similar opti-

mization has been proposed for some particular SpMxV

operations (Buluç et al. 2011). Algorithms 3 and 4 show
the pseudocodes of the DARWR and DAKATZ computation

with the modifications described above.

1102 O. Küçüktunç et al.

123

Author's personal copy

Although the proposed modifications reduce the size of

A and the number of multiplications, there is a drawback.
In Algorithms 1 and 2, line 8 first checks if pt'1ðiÞ[0: If

this is not the case there is no need to traverse any of the

aijs. This shortcut is especially useful when pt'1 contains
only a few positive values which is the case for the first few

iterations. However, such a shortcut only works for nonz-

eros corresponding to the outgoing edges when the matrix
is reduced. That is, if bij is nonzero, Algorithm 3 does the

update ptðjÞ ptðjÞ þ spCðiÞ even though spCðiÞ is zero.

Hence, some updates with no effects are done in Algo-

rithms 3 and 4, although they are skipped in Algorithms 1
and 2.

3.5 Implementations with halved COO Storage
(COO-Half)

If we apply the optimizations described for the halved
CRS, one needs roughly 63MB in memory to store B in

COO format. In this format, the nonzeros are read one by
one. Hence, a shortcut for the updates with no effect is not

practical. On the other hand, with COO, we have more

flexibility for nonzero ordering, since we do not need to
store the nonzeros in a row consecutively. Furthermore,

techniques like blocking can be implemented with much

less overhead. We give the COO-based pseudocodes of
DARWR and DAKATZ in Algorithms 5 and 6.

Fast recommendation on bibliographic networks 1103

123

Author's personal copy

4 Exploiting cache locality in reduced matrix
operations

As explained in the previous section, one of the techniques

we use for compressing the matrix is to store B; but not BT :
After this modification, when a nonzero bij is read, ptðiÞ
and ptðjÞ are updated accordingly. Hence, when we order

B’s rows with a permutation matrix P; we need to use the

same P to order the columns if we want to find the nonzero

indices in BT : Also, using the same permutation allows a

simpler implementation of the iterative SpMxV operations.

Note that although sR and sC can be permuted with dif-
ferent row and column permutations, we only have a single

pt array to process both bij and its transposed counterpart

bji as shown in Fig. 2. Due to these reasons, permuting the

adjacency matrix as B0 ¼ PBPT is good practice for our
problem. Note that the original SpMxV problem does not

have such a restriction. Hence, existing hypergraph parti-

tioning-based approaches cannot be directly applied for our
problem (Akbudak et al. 2012; Yzelman and Bisseling

2009; Yzelman and Bisseling 2011). Note that we can still

use symmetric permutations such as the ones obtained by
RCM, AMD, and SlashBurn.

Similar to existing partitioning-based approaches, we

use a two-phase permutation strategy which first partitions
the rows of B into K parts and sorts them in the increasing

order of their part numbers. The intra-part row ordering is

decided later by using RCM, AMD, or SlashBurn, and the
final permutation matrix P is obtained. Our column-net

hypergraph HR ¼ ðVR;NCÞ is created with n vertices and
n nets corresponding to the rows and columns of B;
respectively, as described in Sect. 2.2. In HR; two vertices

vi and vi’ are connected via a net gj if both bij and bi0j is
equal to 1. To handle the above-mentioned restriction of

using the same permutation for rows and columns, we set

vi 2 gi for all i 2 f1; . . .; ng: That is, we set all diagonal
entries of B; which originally has a zero diagonal, to 1 and

partition it. With this modification, a net j can be internal if

and only if the pins of j are in the same part with vertex j.
Hence, when we permute the rows and columns with

respect to the part numbers of the rows, the columns

corresponding to the internal nets of a part will be accessed

by the rows only in that part.
Since we store the matrix in CRS format, we know that

spC is accessed sequentially (even for COO-Half, our

nonzero ordering respects to row indices to some degree).
Hence, accessing to pt and spR with column indices will

possibly be the main bottleneck. We use PaToH (Çata-

lyürek and Aykanat 1999) to minimize connectivity-1
metric (3) and improve cache locality. Throughout the

computation, the entry spRðjÞ will be put to cache at least
once assuming the jth column has at least one nonzero in it.

If column j is internal to part ‘ then spRðjÞ will be only

accessed by the rows within part ‘ (e.g., nets
n1, n2, n3, and n4, and the corresponding columns in

Fig. 1). Since the internal columns of each part are packed

close in the permutation, when spRðjÞ is put to the cache,
the other entries of spR which are part of the same cache

line are likely to be internal columns of the same part. On

the other hand, when an external column j is accessed by a
part ‘0 which is not the part of j, the cache line containing

spRðjÞ is unlikely to contain entries used by the rows in part

‘0 (n4 and the fourth column in Fig. 1). Minimizing the
connectivity-1 metric equals to minimizing the number of

such accesses. Note that the same is true for the access of

pt with column indices.
We find intra-part row/column orderings by using RCM,

AMD, and SlashBurn where RCM and AMD have previ-

ously been used for fill-in minimization in sparse LU fac-
torization. RCM is used to find a permutation r which

reduces the bandwidth of a symmetric matrix A where the

bandwidth is defined as b = max({|r(i) - r(j)|:
aij = 0}). When the bandwidth is small, the entries are

close to the diagonal, and the cache locality will be high.

The AMD heuristic also has the same motivation of min-
imizing the number of fill-ins, which usually densifies the

nonzeros in different parts of the matrix. Since having

nonzeros close to each other is good for cache locality, we
used these heuristics to order rows and columns inside each

part.

The last ordering heuristic, SlashBurn, has been pro-
posed for matrix compression, i.e., to reduce the number of

Fig. 2 Two memory-access scenarios with different row/column
permutations and nonzero orderings while processing bij and bi0j0

consecutively. The left scenario has a poor cache locality, since the
locations accessed in sR; sC; and pt are far from each other. On the

other hand, in the right scenario, the locations are close to each other.
Thus, with high probability, the required values to process bi0j0 will
already be in the cache after processing bij

1104 O. Küçüktunç et al.

123

Author's personal copy

fixed-size tiles required to cover all the nonzeros in the

matrix, which also implies a reduced number cache-misses.
For several social and web graphs, SlashBurn is proven to

be very effective (Kang and Faloutsos 2011). However, its

complexity is larger than that of RCM and AMD, and as a
result, it is much slower in practice. Since the ordering will

be executed only once as a preprocessing phase of the

theadvisor, for our application, we can ignore its com-
plexity in the evaluation and concentrate on its benefits on

the query response time.
For all the algorithms described in Sect. 3, we used

the proposed ordering approach. For CRS-Full, we per-

muted A; and for CRS-Half and COO-Half, we permuted
B as described above. For COO-Half, we also apply

blocking after permuting B: we divide B into square

blocks of size 1,024 9 1,024 and traverse the nonzeros
with respect to their block ids (and row-wise within a

block). The block size is tuned on the architecture

theadvisor is running on.

5 Experimental results

The setup for the experiments can be summarized as

follows:
Architectures: We used three different architectures to

test the algorithms. The target architecture (Arch1) has a

2.4GHz AMD Opteron CPU and 4GB of main memory.
The CPU has 64KB L1 and 1MB L2 caches. Our service,

theadvisor, is currently running on a cluster with 50 nodes

each having the above-mentioned architecture. For each
query, the service opens a socket to a running process,

submits the query, and returns the results to the user. For

completeness, we also test the algorithms on two more
recent architectures. The second architecture (Arch2) has a

2.4GHz quad-core AMD Opteron (Shanghai) CPU and

32GB of main memory. Each core has 64KB L1 and
512KB L2 cache and each socket has a 6MB L3 cache. The

third architecture (Arch3) has a 2.27GHz quad-core Intel

Xeon (Bloomfield) CPU and 48GB of main memory. Each

core has 32KB L1 and 256KB L2 caches and each socket

has an 8MB L3 cache.
Implementation: All of the algorithms are implemented

in C??. The compiler gcc and the -O2 optimization flag

is used. For the experiments, we use only one core from
each processor.

Queries: We generated 286 queries where each query is

a set Q of paper ids obtained from the bibliography files
submitted by the users of the service who agreed to

donating their queries for research purposes. The number
of query papers, jQj; vary between 1 and 449, with an

average of 24.7.

Parameters: For DARWR, we use d = 0.8 and j = 0.75
which are the default values in theadvisor. For DAKATZ,

we use b = 0.005. While generating the partitions, we set

the imbalance ratio of PaToH to 0.4.
Convergence: We did not use a threshold n for con-

vergence. We observed that DARWR in our citation graph

takes about 20 iterations, and DAKATZ takes about 10
iteration to converge (see Fig. 3). Computing the error

between iterations takes some time, and since we want to

be consistent in the experiments, we let the algorithms
iterate a fixed number of times.

5.1 Effects of the storage schemes on the number
of updates

As mentioned in Sect. 3, the algorithms CRS-Full and
CRS-Half can avoid some updates but COO-Half cannot,

even they have no effect on pt: In our query set, the

average number of papers is 24.7. In the first iteration, pt'1

has only a few positive values on average, and CRS-Full

updates pt only for the corresponding papers in Q: Since n

, 24.7, CRS-Full avoids roughly 12 million nonzeros/
updates in the first iteration. This number is roughly 6

million for CRS-Half. COO-Half traverses all 12 million

nonzeros and does the corresponding updates even if most
of them have no effect for the first couple of iterations.

However, the number of positive values in pt'1 increases

exponentially. As Fig. 4 shows, the shortcuts in CRS-based

Fig. 3 Errors and number of
consistent results within top-100
when DARWR and DAKATZ is
run with the given number of
iterations

Fast recommendation on bibliographic networks 1105

123

Author's personal copy

algorithms are not useful after the eighth iteration. The
figure also implies that the citation graph is highly con-

nected since DARWR and DAKATZ seem to traverse almost

all the nonzeros in A: That is, random walks and paths can
reach to almost all vertices in the graph. We observed that

97 % of the vertices of the citation graph G are in a single

connected component.

5.2 Effects of partitioning and ordering on nonzero

patterns

The nonzero pattern of the adjacency matrix B is given in

Fig. 5a. As the figure shows, the nonzeros are distributed in
all the matrix. In our experiments, the papers are originally

numbered with respect to the order we parse their meta-

data. When B is ordered by using the RCM heuristic, the
nonzero pattern (Fig. 5b) is densified near the diagonal as

expected. The bandwidths of the original and RCM ordered

B matrices are 981, 287 and 460, 288, respectively.
Although the bandwidth is reduced more than half, it is still

large. Figure 5c shows the nonzero pattern of B when

ordered with the AMD heuristic. The nonzeros are densi-
fied inside one horizontal and one vertical block. We

observed that 80 % of the nonzeros are inside this region.

As the figure shows, the remaining nonzeros are located in
smaller horizontal and vertical regions which also may be

helpful to reduce the number of cache misses. The pattern

of SlashBurn also possesses similar characteristics: Fig-
ure 5d shows the arrow-shaped pattern obtained after

ordering B with SlashBurn. All the nonzeros are densified

inside the pattern, and the number of cache misses is
expected to be much less.

As described in Sect. 4, we first partition B in the col-

umn-net model to reorder it. To do that, we use
K = {2, 4, 8, 16, 32, 64} and create six different parti-

tions. For each partition, we create a permutation matrix P

and reorder B as B0 ¼ PBPT : The left-most images in

Figs. 6a–c show the structure of the nonzero pattern of B0

for K = 2, 4, and 8, respectively. In the figures, the hor-

izontal (vertical) lines separate the rows (columns) of the
matrix w.r.t. their part numbers. The diagonal blocks in the

figure contain the nonzeros bijs where the ith and jth row of

B are assigned to the same part. We permute the rows and
columns of these blocks by using the ordering heuristics

RCM, AMD, and SlashBurn. Figure 6 also shows the

nonzero patterns of these further permuted matrices for
each partition with K = 2, 4, and 8.

5.3 Performance analysis

Figure 7a–c shows the number of updates per second (nups)
for each algorithm when RCM, AMD, and SlashBurn are

used, respectively. This experiment counts the number of

updates that occur in memory, even if they are nilpotent, i.e.,
they do not change a value. The configuration which takes

advantage of partitioning most is the COO-Half equipped

with AMD ordering for which nups increases from 270 to 340
million. As the figure shows, SlashBurn does not bring a

performance improvement relative to AMD and RCM.

Hence, considering its complexity, we can suggest that using
AMD and RCM is more practical, especially when the time

spent for the ordering is important.

Although the nonzeros of B0 seem evenly distributed in

Fig. 6, as Table 2 shows, for K = 2 and 4, the percentage

of the nonzeros inside diagonal blocks of B0 are 94 and
83 %, respectively. Hence, the nonzeros are densified

inside these blocks as expected. The number of nonzeros
outside the diagonal blocks is more when K increases.

However, the diagonal blocks tend to get smaller and

denser which may improve the cache locality. As Fig. 7
shows, a consistent improvement can be observed for all

the algorithms CRS-Full, CRS-Half, and COO-Half, and

ordering heuristics RCM, AMD, and SlashBurn up to
K = 8 and 16. But when K gets more than 16, no signifi-

cant improvement can be observed and the performance

can even get worse. There are two main reasons for this
phenomena: first, the fraction of block-diagonal nonzeros

continues to decrease, and second, the diagonal blocks

become smaller than required. That is the cache locality
may be optimized to the most, hence, a further reduction on

the block size is unnecessary. Here, the best K in terms of

performance depends on the configuration. We tested the
algorithms with different K values to find the best config-

uration. As the figure shows, with CRS-Full, the maximum

nups is around 80 million for K = 8 (RCM), 16 (AMD),
and K = 16 (SlashBurn). Compressing the matrix increases

the nups for CRS-Half up to 190 million with K = 16

(AMD). And with blocking used in COO-Half, nups
increases to 340 million with K = 16 (AMD) which is the

maximum for this experiment.

Fig. 4 Number of updates per iteration of the algorithms

1106 O. Küçüktunç et al.

123

Author's personal copy

Fig. 6 The nonzero pattern of the permuted adjacency matrix B with different partitions and ordering heuristics. The row set of each part is
shown with a different color. The diagonal blocks contain bijs where row i and row j of B are in the same part

Fig. 5 The nonzero pattern of B (a) when ordered with RCM (b), AMD (c), and SlashBurn (d). Nonzeros are colored with red and white areas
show empty regions

Fast recommendation on bibliographic networks 1107

123

Author's personal copy

The nups of COO-Half seems to be much superior in

Fig. 7. However, the algorithm itself needs to do more
computation since it cannot skip any of the updates even if

they are nilpotent. To compare the actual response times of

the configurations, we used 286 queries and measured the
average response time on each architecture. Figure 8 shows

the execution times of DARWR and DAKATZ for different

algorithms, Ks, and ordering heuristics on the target
architecture Arch1. For the rest of the figures in the paper,

SB denotes the SlashBurn ordering heuristic.
As concordant with nups values, for DARWR, the fastest

algorithm is COO-Half where K = 16 and the diagonal

blocks are ordered with AMD. The average query response
time for this configuration, which is being used in

theadvisor, is 1.61 s. Compared with the execution time of

CRS-Full with the original ordering, which is 4.80 s, we
obtain 3 times improvement. When K = 1, i.e., if there is

no partitioning, the execution time of COO-Half is 2.29.

Hence, we obtain a speedup of more than 2 due to ordering
and 42 % additional improvement due to partitioning.

For DAKATZ experiment on Arch1, the best configura-

tion is not very visible. In our experiments, the minimum
average query response time, 0.89 s, is obtained again by

COO-Half when it is equipped with AMD and when K is

16. On the other hand, the best CRS-Full configuration
answers a query in 0.90 s on average (with AMD and

K = 16). Although the ordering and partitioning still help a

lot, the improvements due to algorithmic modifications are
only minor for DAKATZ. As described above and shown by

Fig. 4, the number of updates required by CRS-Full only

matches that of COO-Half after the eighth iteration and

DAKATZ converges only in ten iterations for our citation

graph. That is the total work required by CRS-Full is much
less than both CRS-Half and COO-Half for DAKATZ.

Hence, the update overhead cannot be easily compensated

by reducing the bandwidth and improving cache locality.
Still, the average query response time is reduced from 1.89

to 0.89 thanks to ordering and partitioning.

CRS-Full
CRS-Half

COO-Half

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1 2 4 8 16 32 64

ex
ec

ut
io

n
tim

e
(s

)

#partitions

CRS-Full
CRS-Full (RCM)
CRS-Full (AMD)
CRS-Full (SB)

CRS-Half
CRS-Half (RCM)
CRS-Half (AMD)
CRS-Half (SB)

COO-Half
COO-Half (RCM)
COO-Half (AMD)
COO-Half (SB)

CRS-Full
CRS-Half

COO-Half

CRS-Full

CRS-Half
COO-Half

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

1 2 4 8 16 32 64

ex
ec

ut
io

n
tim

e
(s

)

#partitions

CRS-Full
CRS-Full (RCM)
CRS-Full (AMD)
CRS-Full (SB)

CRS-Half
CRS-Half (RCM)
CRS-Half (AMD)
CRS-Half (SB)

COO-Half
COO-Half (RCM)
COO-Half (AMD)
COO-Half (SB)

CRS-Full

CRS-Half
COO-Half

Fig. 8 Execution times in seconds for DARWR (top) and DAKATZ

(bottom) using each algorithm with different Ks and ordering
heuristics on Arch1. The values are the averages of the running
times for 286 queries. For each query, the algorithms perform 20
DARWR iterations and 10 DAKATZ iterations

0

50M

100M

150M

200M

250M

300M

350M

400M

1 2

(a) (b) (c)

4 8 16 32 64

up

da
te

s
pe

r
se

co
nd

 (
nu

ps
)

partitions

CRS-Full
CRS-Half
COO-Half

1 2 4 8 16 32 64

partitions

CRS-Full
CRS-Half
COO-Half

1 2 4 8 16 32 64

partitions

CRS-Full
CRS-Half
COO-Half

Fig. 7 Number of updates per second (nups) for each algorithm and ordering on Arch1 when DARWR is executed for 20 iterations

Table 2 Number of nonzeros inside and outside of the diagonal
blocks of B0 after reordering

K 2 4 8 16 32 64

nnz in 5.62 M 4.92 M 4.39 M 3.80 M 3.46 M 2.95 M

nnz out 0.34 M 1.04 M 1.57 M 2.16 M 2.50 M 3.01 M

1108 O. Küçüktunç et al.

123

Author's personal copy

For completeness, in Fig. 9, we give the results when 20

DAKATZ iterations are performed. On all architectures,

CRS-Full configurations are much slower than CRS-Half
and COO-Half configurations as expected. And the dif-

ferences are more visible. Furthermore, the relative per-

formance of DAKATZ algorithms is more similar to that of
DARWR algorithms with 20 iterations.

We tested our modifications on two other architectures

described above. As shown in Fig. 10, the results are

similar for DARWR on Arch2. COO-Half with AMD is the
fastest configuration, but this time with K = 8. However,

matrix compression seems to have a negative effect on

CRS-Half. Its execution time is more than CRS-Full with
the original ordering. This is unexpected since both on

Arch1 (Fig. 8) and Arch3 (Fig. 11), CRS-Half is faster

than CRS-Full. On Arch3, the fastest DARWR algorithm is
again COO-Half where the average query response time is

0.72 s with K = 8 and the AMD heuristic. Compared to the

time of CRS-Full based DARWR with no ordering, which
is 1.18 s, the improvement is 39 %. If we apply only matrix

compression with COO-Half, the query response time is

1.04 s. Hence, we can argue that we obtained 31 %
improvement by permuting the reduced matrix. If we only

use AMD, i.e., when K = 1, the query response time of

COO-Half is 0.76. This implies roughly 5 % improvement
due to partitioning alone. Since Arch3’s cache is larger

than the others, we believe that when the matrix gets large,

i.e., when the number of papers in our database increases,
the improvements will be much higher on all architectures

but especially on the last architecture.

CRS-Full
CRS-Half

COO-Half

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

1 2 4 8 16 32 64

ex
ec

ut
io

n
tim

e
(s

)

#partitions

CRS-Full
CRS-Full (RCM)
CRS-Full (AMD)
CRS-Full (SB)

CRS-Half
CRS-Half (RCM)
CRS-Half (AMD)
CRS-Half (SB)

COO-Half
COO-Half (RCM)
COO-Half (AMD)
COO-Half (SB)

CRS-Full
CRS-Half

COO-Half

CRS-Full

CRS-Half

COO-Half

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4 8 16 32 64

ex
ec

ut
io

n
tim

e
(s

)

#partitions

CRS-Full
CRS-Full (RCM)
CRS-Full (AMD)
CRS-Full (SB)

CRS-Half
CRS-Half (RCM)
CRS-Half (AMD)
CRS-Half (SB)

COO-Half
COO-Half (RCM)
COO-Half (AMD)
COO-Half (SB)

CRS-Full

CRS-Half

COO-Half

CRS-Full

CRS-Half
COO-Half

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

1 2 4 8 16 32 64

ex
ec

ut
io

n
tim

e
(s

)

#partitions

CRS-Full
CRS-Full (RCM)
CRS-Full (AMD)
CRS-Full (SB)

CRS-Half
CRS-Half (RCM)
CRS-Half (AMD)
CRS-Half (SB)

COO-Half
COO-Half (RCM)
COO-Half (AMD)
COO-Half (SB)

CRS-Full

CRS-Half
COO-Half

Fig. 9 Execution times of DAKATZ algorithms in seconds on
architectures on Arch1 (top), Arch2 (middle), and Arch3 (bottom)
with different Ks and ordering heuristics. The values are the averages
of the running times for 286 queries. For each query, 20 DAKATZ

iterations are performed

CRS-Full

CRS-Half

COO-Half

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4 8 16 32 64

ex
ec

ut
io

n
tim

e
(s

)

#partitions

CRS-Full
CRS-Full (RCM)
CRS-Full (AMD)
CRS-Full (SB)

CRS-Half
CRS-Half (RCM)
CRS-Half (AMD)
CRS-Half (SB)

COO-Half
COO-Half (RCM)
COO-Half (AMD)
COO-Half (SB)

CRS-Full

CRS-Half

COO-Half

CRS-Full

CRS-Half

COO-Half

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 4 8 16 32 64

ex
ec

ut
io

n
tim

e
(s

)

#partitions

CRS-Full
CRS-Full (RCM)
CRS-Full (AMD)
CRS-Full (SB)

CRS-Half
CRS-Half (RCM)
CRS-Half (AMD)
CRS-Half (SB)

COO-Half
COO-Half (RCM)
COO-Half (AMD)
COO-Half (SB)

CRS-Full

CRS-Half

COO-Half

Fig. 10 Execution times in seconds for DARWR (top) and DAKATZ

(bottom) using each algorithm with different Ks and ordering
heuristics on Arch2. The values are the averages of the running
times for 286 queries. For each query, the algorithms perform 20
DARWR iterations and 10 DAKATZ iterations

Fast recommendation on bibliographic networks 1109

123

Author's personal copy

For DAKATZ on Arch2 (Fig. 10) and Arch3 (Fig. 11),

the best algorithm is clearly CRS-Full. The RCM ordering

yields 40 % (0.45–0.37 s) and 18 % (1.06–0.65 s)
improvements on the average query response time,

respectively. However, the partitioning is not useful in

practice for DAKATZ on these architectures since it
improves the query response times of other configurations

but has a negative effect on CRS-Full with RCM. A similar

pattern is also visible for the same DARWR and DAKATZ

configurations especially on architectures Arch2 and

Arch3. The partitioning and the corresponding permutation

on B are designed while taking the halved matrix into
account: an access to a nonzero bij yields also the pro-

cessing of bji. That is, the nonzeros to be processed are

coming from a two-dimensional region. Hence, having the
nonzeros inside diagonal blocks, COO-Half should be the

algorithm which utilizes the optimizations the most, espe-

cially considering its blocked access pattern. On the con-
trary, for the same reasons, CRS-Full should be the worst

algorithm for exploiting the optimizations, since the

upcoming accesses in CRS-Full are only in column

dimension. Furthermore, partitioning and permutation

increase the bandwidth of the matrix which is arguably the
most important criterion for CRS-Full. Since RCM aims to

minimize the bandwidth of the matrix, the performance can

be reduced when an additional partitioning is used. On the
other hand, when the cache is not enough or the bandwidth

is still large after RCM, partitioning may take effect and

improve the performance. This can be observed in Fig. 8
for the target architecture Arch1 which has 6 and 8 times

less cache than Arch2 and Arch3, respectively.
Considering the number of updates of CRS-Full is much

less than COO-Half for the first few iterations, it is

expected to be faster than COO-Half. On the other hand,
when 20 DAKATZ iterations are performed instead of 10,

COO-Half with AMD is again the best configuration as

shown in Fig. 9.

6 Conclusion and future work

In this paper, we proposed an efficient implementation of

an SpMxV-type problem which arises in our publicly
available citation, venue, and expert recommendation ser-

vice, theadvisor. We proposed compression and bandwidth

reduction techniques to reduce the memory usage and
hence, the bandwidth required to bring the matrix from the

memory at each iteration. We also used matrix ordering

techniques to reduce the number of cache misses. Experi-
mental results show that these modifications greatly help to

reduce the query execution time.

As a future work, we are planning to develop new ideas
to further reduce the query response time. As far as the

service is running, this will be one of the tasks we are

interested in. Note that in SpMxV operations, it is very
hard to obtain linear speedup with shared memory parall-

elization. Hence, to maximize the throughput we chose to

use one processor per query. However, we believe that
such parallelism can still be effective for theadvisor
especially when the number of concurrent requests is less

than the number of processors allocated in the cluster.
Another work we are interested in is to make the service

much faster via a hybrid implementation of DARWR (or

DAKATZ) which uses a combination of CRS-Full, CRS-
Half, and COO-Half. In its simple form, the hybrid

approach can use CRS-Full in the first few iterations then

switch to COO-Half to utilize the efficiency of the algo-
rithms to the most. The overhead of such a scheme is

storing the citation matrix multiple times and a transition

cost incurred while switching from one algorithm to
another. We believe that a hybrid implementation is

promising and we aim to do a thorough investigation in the

near future.

CRS-Full

CRS-Half
COO-Half

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

1 2 4 8 16 32 64

ex
ec

ut
io

n
tim

e
(s

)

#partitions

CRS-Full
CRS-Full (RCM)
CRS-Full (AMD)
CRS-Full (SB)

CRS-Half
CRS-Half (RCM)
CRS-Half (AMD)
CRS-Half (SB)

COO-Half
COO-Half (RCM)
COO-Half (AMD)
COO-Half (SB)

CRS-Full

CRS-Half
COO-Half

CRS-Full

CRS-Half

COO-Half

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

1 2 4 8 16 32 64

ex
ec

ut
io

n
tim

e
(s

)

#partitions

CRS-Full
CRS-Full (RCM)
CRS-Full (AMD)
CRS-Full (SB)

CRS-Half
CRS-Half (RCM)
CRS-Half (AMD)
CRS-Half (SB)

COO-Half
COO-Half (RCM)
COO-Half (AMD)
COO-Half (SB)

CRS-Full

CRS-Half

COO-Half

Fig. 11 Execution times in seconds for DARWR (top) and DAKATZ

(bottom) using each algorithm with different Ks and ordering
heuristics on Arch2. The values are the averages of the running
times for 286 queries. For each query, the algorithms perform 20
DARWR iterations and 10 DAKATZ iterations

1110 O. Küçüktunç et al.

123

Author's personal copy

Acknowledgments This work was supported in parts by the DOE
grant DE-FC02-06ER2775 and by the NSF grants CNS-0643969,
OCI-0904809, and OCI-0904802.

References

Agarwal RC, Gustavson FG, Zubair M (1992) A high performance
algorithm using pre-processing for the sparse matrix-vector
multiplication. In: Proceedings of ACM/IEEE Supercomputing,
pp 32–41

Akbudak K, Kayaaslan E, Aykanat C (2012) Hypergraph-partition-
ing-based models and methods for exploiting cache locality in
sparse-matrix vector multiplication. CoRR abs/1202.3856

Amestoy PR, Davis TA, Duff IS (1996) An approximate minimum
degree ordering algorithm. SIAM J Matrix Anal Appl 17(4):
886–905

Bollen J, Rodriguez MA, de Sompel HV (2006) Journal status.
Scientometrics 69(3):669–687

Buluç A, Williams S, Oliker L, Demmel J (2011) Reduced-bandwidth
multithreaded algorithms for sparse matrix-vector multiplication.
In: Proceedings of IEEE International Parallel and Distributed
Processing Symposium, pp 721–733

Çatalyürek ÜV, Aykanat C (1999) Hypergraph-partitioning based
decomposition for parallel sparse-matrix vector multiplication.
IEEE Trans Parallel Distrib Syst 10:673–693

Çatalyürek ÜV, Aykanat C (1999) PaToH: a multilevel hypergraph
partitioning tool, Version 3.0. Bilkent University, Computer Engi-
neering, Ankara, Turkey. http://bmi.osu.edu/*umit/software.htm

Çatalyürek ÜV, Aykanat C (2001) A fine-grain hypergraph model for
2D decomposition of sparse matrices. In: Proceedings of IEEE
International Parallel and Distributed Processing Symposium

Chipman KC, Singh AK (2009) Predicting genetic interactions with
random walks on biological networks. BMC Bioinformatics
10:17

Cuthill E, McKee J (1969) Reducing the bandwidth of sparse
symmetric matrices. In: Proceedings of ACM national confer-
ence, pp 157–172

Gori, M. Pucci A (2006) Research paper recommender systems: a
random-walk based approach. In: Proceedings of IEEE/WIC/
ACM Web Intelligence, pp 778–781

Kang U, Faloutsos C (2011) Beyond ‘caveman communities’: hubs
and spokes for graph compression and mining. In: Proceedings
of IEEE International Conference Data Mining, pp 300–309

Kessler MM (1963) Bibliographic coupling between scientific papers.
American Documentation 14:10–25

Kim HN, El-Saddik A (2011) Personalized PageRank vectors for tag
recommendations: inside FolkRank. In: Proceedings of ACM
Recommender Systems, pp 45–52

Küçüktunç O, Kaya K, Saule E, Çatalyürek ÜV (2012a) Fast
recommendation on bibliographic networks. In: Proceedings of
Advances in Social Networks Analysis and Mining, pp 480–487

Küçüktunç O, Saule E, Kaya K, Çatalyürek ÜV (2012b) Direction
awareness in citation recommendation. In: Proceedings of

International Workshop on Ranking in Databases (DBRank’12)
in Conjunction with VLDB’12

Lawrence S, Giles CL, Bollacker K (1999) Digital libraries and
autonomous citation indexing. Computer 32:67–71

Lengauer T (1990) Combinatorial algorithms for integrated circuit
layout. Wiley–Teubner, Berlin

Li J, Willett P (2009) ArticleRank: a PageRank-based alternative to
numbers of citations for analyzing citation networks. Proc Assoc
Inform Manag 61(6):605–618

Liben-Nowell D, Kleinberg JM (2007) The link-prediction problem
for social networks. J Am Soc Inform Sci 58(7):1019–1031

Page L, Brin S, Motwani R, Winograd T (1999) The PageRank
citation ranking: bringing order to the web. TR 1999-66,
Stanford InfoLab

Pan JY, Yang HJ, Faloutsos C, Duygulu P (2004) Automatic
multimedia cross-modal correlation discovery. In: Proceedings
of ACM SIGKDD International Conference Knowledge Dis-
covery and Data Mining, pp 653–658

Pichel JC, Heras DB, Cabaleiro JC, Rivera FF (2005) Performance
optimization of irregular codes based on the combination of
reordering and blocking techniques. Parallel Comput 31(8–9):858–
876

Pichel JC, Heras DB, Cabaleiro JC, Rivera FF (2009) Increasing data
reuse of sparse algebra codes on simultaneous multithreading
architectures. Concurr Comput Pract Experience 21(15):
1838–1856

Pinar A, Heath MT (1999) Improving performance of sparse matrix-
vector multiplication. In: Proceedings of ACM/IEEE
Supercomputing

Small H (1973) Co-citation in the scientific literature: a new measure
of the relationship between two documents. J Am Soc Inf Sci
24(4):265–269

Strohman T, Croft WB, Jensen D (2007) Recommending cictations
for academic papers. In: Proceedings of International ACM
SIGIR Conference Research and Development in Information
Retrieval, pp 705–706

Temam O, Jalby W (1992) Characterizing the behavior of sparse
algorithms on caches. In: Proceedings of ACM/IEEE Super-
computing, pp 578–587

Toledo S (1997) Improving the memory-system performance of
sparse-matrix vector multiplication. IBM J Res Dev
41(6):711–726

White JB, Sadayappan P (1997) On improving the performance of
sparse matrix-vector multiplication. In: Proceedings of Interna-
tional Conference High Performance Computing, pp 66–71

Yin Z, Gupta M, Weninger T, Han J (2010) A unified framework for
link recommendation using random walks. In: Proceedings of
Advances in Social Networks Analysis and Mining, pp 152–159

Yzelman AN, Bisseling RH (2009) Cache-oblivious sparse matrix–
vector multiplication by using sparse matrix partitioning meth-
ods. SIAM J Sci Comput 31:3128–3154

Yzelman AN, Bisseling RH (2011) Two-dimensional cache-oblivious
sparse matrix-vector multiplication. Parallel Comput 37:806–819

Fast recommendation on bibliographic networks 1111

123

Author's personal copy

	Fast recommendation on bibliographic networks with sparse-matrix ordering and partitioning
	Abstract
	Introduction
	Background
	Citation analysis: random walk with restart and Katz
	Modeling sparse matrices with hypergraphs
	Matrix ordering techniques for improving cache locality in SpMxV

	Direction-aware methods for citation recommendation
	Direction-aware Random walk with restart (DaRWR)
	Direction-aware Katz (DaKatz)
	Implementations with standard CRS (CRS-Full)
	Implementations with halved CRS (CRS-Half)
	Implementations with halved COO Storage (COO-Half)

	Exploiting cache locality in reduced matrix operations
	Experimental results
	Effects of the storage schemes on the number of updates
	Effects of partitioning and ordering on nonzero patterns
	Performance analysis

	Conclusion and future work
	Acknowledgments
	References

